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APM 504 Project: Random Walks as Electrical Networks
Brian Sweeney

Background

Walks on Electrical Networks

To study random walks on graphs, we can realize these graphs as electrical networks and
use properties of these networks to derive properties of the graph. To turn a graph into
an electrical network, we must make connections between aspects of a graph and those
of an electrical network. Let G = (V,E) be a connected graph and x, y ∈ V . First,
we assign a conductance to each edge, meaning that we have a function on the graph,
c : E → [0,∞], where the conductance along an edge is denoted by c(x, y). We also define
c(x) =

∑
z∼x c(x, z), where z ∼ x means that x and z are connected by an edge. This then

gives us a random walk on the electrical network (G, c). In this random walk, the transition
probability between x and y is given by

p(x, y) =
c(x, y)

c(x)
1(x, y) ∈ E.

This transition probability makes this random walk a discrete-time Markov chain.

To further explore the connection between random walks and electrical networks, we can
include more aspects of electrical networks into our graph. First, we can choose two vertices,
a and b on the graph and apply a voltage of 1 at a and 0 at b (by putting a one-volt battery
between them). Then, we can define the voltage at any vertex, x, as v(x), and the current
along the edge connecting x and y as i(x, y). These are connected by Ohm’s Law, which
gives us that for any (x, y) ∈ E,

i(x, y) =
v(x)− v(y)

R(x, y)
= c(x, y)(v(x)− v(y)).

It can also be shown that the voltage, v(x) is a harmonic function. So, when a voltage of 1 is
applied to a and a voltage of 0 applied to b, the voltage at any vertex, x, can be interpreted
as the probability that a random walk starting from x reaches a before b. So, for x ∈ V ,

v(x) = Px(τa < τb), where τy = inf{n ≥ 0 : Xn = y},

with v being a unique harmonic function on the network satisfying this condition. Since v
is harmonic, we have that for all x 6= a, b,

v(x) =
∑
z∼x

c(x, z)

c(x)
v(z),
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and v(a) = 1, v(b) = 0.

For the current, Kirchhoff’s current law gives us that the current flowing through any vertex,
x, denoted by

i(x) =
∑
z∼x

i(x, z),

such that x is not a or b, is 0. On any edge (x, y), the current has a probabilistic interpre-
tation: for a random walk starting at a, the current, i(x, y), is the expected value of the
difference between the number of times a random walk goes from x to y and the times it
goes from y to x, before reaching b, divided by the effective resistance.

From the proof for the probabilistic interpretation of current, we can define the effective
resistance between a and b as

Reff (a, b) =
1

i(a)
=

1∑
z∼a i(a, z)

.

The interpretation of the effective resistance is that it is the voltage needed to send a unit
of current from a to b. It is also related to the escape probability, pesc(a, b), which is the
probability that a random walk starting at a reaches b before returning to a. This relationship
is given by

ceff = 1/Reff = c(a)pesc(a, b).

Thus, the effective resistance can be used to find the escape probability of the random walk.

Calculating Escape Probabilities

There are two ways to utilize this representation of a random walk as an electrical network
connection to find the escape probability of a connected graph. One option is to calculate
the voltage at each vertex in the network by solving a linear system for the unique harmonic
function v(x). Then, using Ohm’s Law, this voltage function can be used to find the total
current, i(a), and the effective resistance, which gives the escape probability.

The alternative method involves reducing the network to a single edge connecting a and b.
This is done using two rules for resistance which come from electrical networks. The first
rule is that two serial edges with resistances R1 and R2 can be replaced with a single edge
with a resistance equal to the sum of the resistances, R1 + R2. The second rule states that
two parallel edges between the same vertices can be replaced with a single edge that has a
conductance equal to the sum of the conductances. In other words, two parallel edges with
resistances R1 and R2 can be replaced with a single edge with resistance (1/R1 + 1/R2)

−1.
To use this method, we first want to reduce a network by identifying edges that are the same
distances from both a and b, and model the same number of edges on these fewer vertices
where some are identified together. Then, the edges can be reduced and simplified to a single
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edge using the rules. The resistance of the remaining edge is then the effective resistance
between a and b, which can be used to find the escape probability.

The connection here between escape probability and effective resistance can be expanded to
properties of infinite graphs with Rayleigh’s Monotonicity Law.

Connection to Infinite Networks

To define recurrence and transience in an infinite electrical network, we will use a sphere
and the return time to the sphere. So, for every r > 0, we define a sphere with center a and
radius r by

S(a, r) = {z ∈ V : d(a, z) = r},
where d is the graph distance function. Then, the first return time to this sphere is given by

T (a, r) = inf{n > 0 : Xn ∈ S(a, r)}.

Using the return time, define the probability of escape, pesc(r) as

pesc(r) = P (T (a, r) < Ta|X0 = a).

Then, since this escape probability is nonincreasing in r, we have that the limit limr→∞pesc(r)
exists. So, by the definition of recurrence, an electrical network is recurrent if and only if
this limit is zero. This would imply that the walk returns with probability zero.

We can combine this definition of recurrence with Reyleigh’s monotonicity law to analyze
infinite walks. Reyleigh’s monotonicity law states that increasing the resistance of an edge
can only increase the resistance between any two vertices in the network while decreasing
the resistance of an edge can only decrease resistance between vertices. This means that for
a given recurrent network, if we only increase the resistance of the edges, the network will
still be recurrent. Similarly if a network is transient, then decreasing the resistances of some
of the edges will still produce a transient network.

To help study graphs using Reyleigh’s monotonicity law, we can introduce a few terms
for graph modifications. First, we can cut an edge by setting its resistance to infinity or
equivalently, its conductance equal to 0. This is the same as removing the edge and only
increases effective resistance. Another action is shorting an edge, where the edge is given zero
resistance. This has the effect of identifying the two vertices together that were connected by
that edge, which can only decrease effective resistance. One other operation we can perform
is adding an edge to the graph between two vertices.

Combining these actions with Reyleigh’s monotonicity law, we can derive that any subgraph
of a recurrent graph is still recurrent while any supergraph of a transient one is still transient.
This result is easier to see and understand through the connection with electrical networks
and is one benefit of this connection between random walks on graphs and electrical networks.
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Problems

1 volt

a

b

1/
21

d

1/2

1

c

1

Figure 1 Electrical network for Exercise 8.6.

Exercise 8.6 Consider the electrical network with resistances shown in Figure 1, and
put a battery that establishes a voltage one at a and zero at b.

1. Find the voltages at vertices c and d.

From the proof of Lemma 8.3, we know that

v(c) =
∑
x∼c

c(c, x)

c(c)
v(x).

Also, we have that the conductance is equal to the recipricoal of the resistance, so R = 1/c.
So, in this problem we have that

c(c) =
∑
x∼c

c(c, x) = c(c, a) + c(c, b) + c(c, d) = 1 + 1 + 2 = 4

and
c(d) =

∑
x∼d

c(d, x) = c(d, a) + c(d, b) + c(d, c) = 1 + 2 + 2 = 5.
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Thus, we can calculate that

v(c) =
∑
x∼c

c(c, x)

c(c)
v(x)

=
c(c, a)

4
v(a) +

c(c, b)

4
v(b) +

c(c, d)

4
v(d)

=
1

4
(1) +

1

4
(0) +

2

4
v(d)

=
1

4
+

1

2
v(d).

Similarly, we have that

v(d) =
∑
x∼d

c(d, x)

c(d)
v(x)

=
c(d, a)

5
v(a) +

c(d, b)

5
v(b) +

c(d, c)

5
v(c)

=
1

5
(1) +

2

5
(0) +

2

5
v(c)

=
1

5
+

2

5
v(c).

Solving for v(c), we get that 4
5
v(c) = 7

20
, so v(c) = 7

16
. This gives us that v(d) = 3

8
. Thus,

v(c) = 7
16

and v(d) = 3
8
.

2. Deduce the probability that the random walk on this electrical network reaches vertex b
before returning to a when starting from vertex a.

By definition, the probability that the random walk reaches b before returning to a
is the escape probability. From the proof of Lemma 8.5, we have that pesc(a, b) = 1 −∑

z∼a p(a, z)p(z). Here, p(a, z) is the transition probability while p(z) = v(z) by Lemma 8.3.
Thus, we can calculate this directly:

pesc(a, b) = 1−
∑
z∼a

p(a, z)p(z)

= 1− c(a, c)

c(a)
p(c)− c(a, d)

c(a)
p(d)

= 1− (
1

2
)(

7

16
)− (

1

2
)(

3

8
)

= 1− 7

32
− 6

32
=

19

32

Thus, pesc(a, b) = 19
32

, so the probability that the random walk reaches vertex b before re-
turning to vertex a is 19

32
.
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Exercise 8.7 Consider the electrical network obtained from the cube by assigning resistance
one to each of the twelve edges. Let a and b be two vertices at graph distance two from each
other and let h be the unique harmonic function taking the value one at a and zero at b.

1. Use a probabilistic argument to find (without calculation) the value that the function h
takes at each of the vertices x such that d(a, x) = d(b, x).

The probabilistic interpretation of voltage, which is the unique harmonic function in
this case, is that the voltage at each vertex is equal to the probability that a random walk
starting from this vertex reaches a before b. Now, at the vertices such that d(a, x) = d(b, x),
the random walk starting from x is the same number of edges away from a as from b. Since
the resistance along each edge of the cube is equal, this random walk is symmetric and has
an equal probability to move toward a or toward b at each step. So, the probability that this
random walk reaches a first should be equal to the probability that it reaches b first, 1/2.
So, h should have a value of 1

2
at each of the vertices x where d(a, x) = d(b, x).

2. Find more generally the value of h at all vertices.

First, we will categorize the vertices of this graph, identifying vertices that are the same
distances away from a and b together since they will have the same value in the function
h. Let xi be the two vertices where d(a, xi) = d(b, xi) = 1, yi be the two vertices where
d(a, yi) = d(b, yi) = 2, z be the vertex where d(a, z) = 1 and d(b, z) = 3, and w be the vertex
where d(a, w) = 3 and d(b, x) = 1. Then, since voltage is harmonic, we can calculate the
voltage at each vertex to obtain the value of h at each vertex. We will use the equation
derived in the proof of Lemma 8.3:

v(c) =
∑
d∼c

c(c, d)

c(c)
v(d).

Note that in this case, since the resistance on each edge is one, the conductance on each edge
is also one and so for every vertex c, c(c) = 1 + 1 + 1 = 3.

So, carrying out this computation for each (unique) vertex, we obtain the following:

v(xi) =
1

3
(1) +

1

3
v(yi) +

1

3
(0)

v(yi) =
1

3
v(xi) +

1

3
v(z) +

1

3
v(w)

v(z) =
1

3
(1) +

2

3
v(yi)

v(w) =
2

3
v(yi) +

1

3
(0)

Since the equations for v(xi), v(z) and v(w) only depend on v(yi), we can substitute them
into the equation for v(yi) and solve. Doing so gives us that v(yi) = 2

9
+ 5

9
v(yi), so v(yi) = 1

2
.
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This can then be used to solve for the voltage at each of the other vertices, giving us that
v(xi) = 1

2
, v(z) = 2

3
, and v(w) = 1

3
.

Thus, the unique harmonic function h satisfies that h(xi) = h(yi) = 1
2

for i = 1, 2,
h(z) = 2

3
, and h(w) = 1

3
.

3. Deduce that the probability that the symmetric random walk on the cube starting at
vertex a reaches b before returning to a is equal to 4/9.

By definition, the probability that the random walk reaches b before returning to a
is the escape probability. From the proof of Lemma 8.5, we have that pesc(a, b) = 1 −∑

z∼a p(a, z)p(z). Noting that from Lemma 8.3, p(z) = v(z), with v being the unique
harmonic function, so v = h and we can use the harmonic function found in the last part to
compute the escape probability.

Now, vertex a is connected to three other vertices in this graph. Using the labels from
the last part, these vertices are labeled as x1, x2, and z. So, the escape probability is

pesc(a, b) = 1−
∑
c∼a

p(a, c)p(c)

= 1−
∑
c∼a

c(a, c)

c(a)
p(c)

= 1− (
c(a, x1)

c(a)
v(x1) +

c(a, x2)

c(a)
v(x2) +

c(a, z)

c(a)
v(z))

= 1− (
1

3
)(

1

2
)− (

1

3
)(

1

2
)− (

1

3
)(

2

3
)

= 1− 1

3
− 2

9
= 1− 5

9
=

4

9
.

Thus, the escape probability is 4/9, so the probability that the symmetric random walk on
the cube starting at vertex a reaches b before returning to a is 4/9.

Exercise 8.8 Let a and b be two adjacent vertices of the electrical network obtained from
the cube by assigning resistance one to each of the twelve edges.

1. Use the two rules shown in Figure 8.4 as in Example 8.1 to find the effective resistance
between a and b.

To use the rules in Figure 8.4, we need to reduce the network. Using symmetry, we can
identify the two vertices at distance one of a and distance two of b, call these vertices xi for
i = 1, 2. Similarly, we can identify the two vertices at distance one of b and distance two of
a, labeling them yi for i = 1, 2. Label the last two vertices v and w. Doing this allows us to
reduce the the network to one with six vertices and twelve edges as below, with each edge
having resistance 1.
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a

a b

x1, x2 y1, y2

v w

Then, using the resistance rule to reduce parallel edges to a single edge, we can reduce
the network to only 7 edges:

a

a b

x1, x2 y1, y2

v w

1

1/2

1/2

1

1/2

1/2
1/2

Now, we can combine the three serial paths connecting x1, x2 to y1, y2 via v and w into a
single path by summing the resistances as 1/2 + 1 + 1/2 = 2. Then, we can reduce the two
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paths connecting x1, x2 to y1, y2 using the parallel paths rule. So, the resistance of this new
path is (1/2 + 2)−1 = 2/5. The new reduced network is then

a

a b1

1/2

2/5

1/2

Lastly, we combine the three serial paths connecting a and b into one with a resistance of
1/2+2/5+1/2 = 7/5, and then reduce the resulting parallel paths using the other resistance
rule. This gives a single path between a and b with a resistance of (1 + 5/7)−1 = 7/12.

a

a b1

7/5

So, we get the the effective resistance between a and b is Reff (a, b) = 7
12

.

2. Deduce the probability that the symmetric random walk on the cube starting at vertex a
reaches vertex b before returning to b.

By definition, the probability that the random walk reaches b before returning to a is the
escape probability. From Lemma 8.5, we have that

1/Reff (a, b) = ceff (a, b) = c(a)pesc(a, b),

so pesc(a, b) = 1
Reff (a,b) c(a)

. For this network, c(a) =
∑

z∼a c(a, z) = 1 + 1 + 1 = 3. So, we

have that

pesc =
1

Reff (a, b) c(a)
=

1

(7/12)(3)
=

12

21
=

4

7
.

Thus, pesc(a, b) = 4/7, so the probability that the symmetric random walk on the cube
starting at vertex a reaches vertex b before returning to b is 4/7.

3. Compare this escape probability with the two analogous escape probabilities obtained in
Example 8.1 and Exercise 8.7.
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The escape probabilities in each of these exercises use an electrical network on the cube
with resistance one on each edge. In Example 8.1, a and b are diagonally opposite corners of
the cube, while in Exercise 8.7, a and b are a graph distance of 2 apart. The escape probability
for Example 8.1 was 2/5 and for Exercise 8.7, it was 4/9. So, the escape probability for this
network is larger than the analogous escape probabilities in those other cases, meaning that
a symmetric random walk on the cube is more likely to reach b before returning to a when a
and b are closer to each other. The escape probability is higher when the distance between
a and b is smaller.

Exercise 8.9 For the symmetric random walks on the octahedron, the icosahedron and
the dodecahedron shown in Figure 7.1, compute the probability that the process starting at
vertex a reaches vertex b before returning to a where vertices a and b are two diametrically
opposite vertices.

To apply the rules to compute the effective resistance between a and b, I will first cate-
gorize the vertices in each of the solids based on their distances from a and b. Then, I can
form a network for the system with fewer vertices, which is easier to reduce.

Octahedron

For the octahedron, there are six vertices. We have a and b at opposite vertices and then four
vertices that are a distance one from a and a distance one from b. Labeling these vertices ci
and removing the self-loops on the ci (which are unimportant for this escape probability),
we can reduce the graph to the following graph where each edge has resistance 1:

a

a

c1, c2, c3, c4

b

Then, we can use the resistance rules to combine each set of parallel edges into a single
edge. In this case, both resultant edges have resistance 4, producing the following reduced
graph:

a

a b1/4 1/4

This can be further simplified by combining the paths into a single one connecting a and
b, with a resistance of 1/4 + 1/4 = 1/2. Thus, there is an effective resistance of 1/2 between
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a and b, Reff (a, b) = 1/2. We can also compute that c(a) =
∑

x∼a c(a, x) = 4(1) = 4. Thus,

pesc(a, b) =
1

Reff (a, b) c(a)
=

1

(1/2)4
=

1

2
.

So, for the octahedron, pesc(a, b) = 1
2
.

Icosahedron

The icosahedron has 12 vertices and 30 edges. With a and b at opposite vertices, we have
5 vertices at a distance one from a and a distance two from b, which we will call ci. There
are also 5 vertices a distance two from a and one from b which we will call di. With this
identification between edges, we can simplify this network by removing the edges between
the identified vertices so that we have a graph with 20 edges and four vertices. This graph
is displayed below, with each edge having resistance 1.

a

a

c1, ..., c5 d1, ..., d5

b

5 edges
10 edges

5 edges

Using the resistance rules to combine parallel paths, we can reduce the parallel paths to
single paths connecting the four vertices. The new resistances are then 1/5, 1/10, and 1/5.
The simplified graph is then

a

a b1/5 1/10 1/5

Then, we can use the resistance rules to combine these serial paths between a and b to
obtain a single path with a resistance of 1/5 + 1/10 + 1/5 = 1/2. Thus, Reff (a, b) = 1/2.
We can also compute that c(a) =

∑
x∼a c(a, x) = 5(1) = 5. Thus,

pesc(a, b) =
1

Reff (a, b) c(a)
=

1

(1/2)5
=

2

5
.

So, for the icosahedron, pesc(a, b) = 2
5
.
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Dodecahedron

The dodecahedron has 20 vertices and 30 edges. With a and b at opposite vertices, we can
identify the remaining 18 vertices into four categories. There are 3 at a distance 1 from a
and 4 from b, denoted ci, 6 vertices at a distance 2 from a and 3 from b denoted di, 6 vertices
at a distance 3 from a and 2 from b denoted ei, and 3 at a distance 4 from a and 1 from
b denoted fi. With this identification, this network can be simplified to a graph with six
vertices and 30 edges between them, each with resistance 1.

a

a

c1, c2, c3 d1, ..., d6 e1, ..., e6 f1, f2, f3

b

3 edges 6 edges 6 edges 6 edges 3 edges

Combining parallel paths according to the resistance rule, we get the following network
with the labeled resistances:

a

a b1/3 1/6 1/6 1/6 1/3

Lastly, combining this path into a single path using the resistance rules, we get an effective
resistance of 2(1/3) + 3(1/6) = 7/6 between a and b. Thus, Reff (a, b) = 7/6. We can also
compute that c(a) =

∑
x∼a c(a, x) = 3(1) = 3. Thus,

pesc(a, b) =
1

Reff (a, b) c(a)
=

6

7
(
1

3
) =

2

7
.

So, for the dodecahedron, pesc(a, b) = 2
7
.
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