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APM 503 Project: Proofs Involving Inner Product Spaces
Brian Sweeney

A.1.1. (An inner product is uniquely determined by the norm) Let X be a vector space
with inner product (-,-) and associated norm || - ||.

(a) Show that (u,v) + (v,u) = 5(||u+ v||* — |Ju — v||?).

Proof. Since O € X, let u,v € X. Since || - || on X is induced by an inner product,
|u]|? = (u,u) for u € X.

1
Then, 5 (|[u+v[[* = [lu = v|[*)

:1(<u—|—v,u+v>—<u_“v“_v>)

2
= 2 () {0, ) + {o,0) + {o,0) — o)+ (0,) + (,0) — {0, 0)
= %(2<v,u> + 2(u,v))
= (u,v) + (v, u)

Thus, (u,v) + (v, u) = 5(||u+v|[* = [Ju—v[]?).

(b) Show that in a real inner product space (u,v) = 1(|Ju +v||* — [Ju — v|[?).

Proof. Since O € X, let u,v € X. Since || - || on X is induced by an inner product,
|u]]?* = (u,u) for w € X. From the above proof (part (a)), we know that (u,v) + (v,u) =
3l + ol = [lu—o[]?).

1 11
So, Z(llu+vll® = [lu = ol") = (G (llu+vll* = llu = ][*)

2
1
2

Since this is a real inner product space, (u,v) = (v, u), so

1 1
5w, v) + {v,0)) = 5((w,v) + (u,v)) = (u,v)

Thus, §([lu+ o[l = |lu—[]*) = (u,v).



(c) Show that, if X is a complex inner product space,
1
(u,v) = (v,u) = S(llw+ [P = [Ju—iv]]*)

and ]
(u,v) = Z(HHUW —[lu = vl]? +illu+ | — ilJu — | [?).

Proof. Since O € X let u,v € X.

Then, %(Hu +iv|]* = [Ju — iv||?)
— §(<u +iv, u+ iv) — (u — iv,u — v))
= 5 () =+ i, ) + () o Giv, iv) — {u ) + (v, )+ (i) — (v, i)
- %(2<iv,u> + 2(u, )
= i(iv, u) + i(u, iv)
= i*{v,u) + (iu,iv)
= (u,v) — (v, u).

Thus, (u,v) — (v, u) = 5(||u+v]|* - [Ju — iv|[*).

Since O € X, let u,v € X. Then,
1 2 2, 2 12 1 2 2y, & 2 2
7 Ultol P =flu=v|[P il lutiv]P=iffu—iwl ") = Z((Jlutv][ = [lu—0v[[)+ 7 (lutiv]]" il ju—iv]])

. Using the result from (a), that (u,v) + (v,u) = 1(||u + v|[* — |Ju — v|[*), and the result
above, that (u,v) — (v,u) = %(||u+ iv||* — |Ju — iv]||?), we have the following;

1 { : , ,
Z(HHUHQ = [Ju—vl*) + ;l(HUerH2 — il —v|[*)
1 1

= 5w 0) + (v,u)) + 5({w,0) — (v,))

= (u, v).

Thus, 1 ([[u+v|[* = [lu = v[]* + il[u + @w|* — i[lu — iv[[*) = (u,v).



A.1.2. Areal n x n matrix A = (ay;) is called symmetric if oy;; = a; forall i, 5 =1, ..., n.

(a) Show that a real n x n matrix A is symmetric if and only if = - (Ay) = (Az) - y for all
z,y € R".

Proof.

(—) Suppose that a real n x n matrix A is symmetric. So, o;; = o; for all 4,5 =1,...,n.
Let z,y € R"; z = (z;) and y = (y;), with i =1, ..., n.

Then, Ay = (b;), where b; = Z?Zl a;;y; for e =1, ...,n. Thus,
x- (Ay) = Z%’bi
i=1
Sl o)
=1 j=1

i=1 j=1

Now, we can change the order of the summations and factor out y;:

z - (Ay) = Z inaijyj

i=1 j=1

= Z Z LY

j=1 i=1
n n

= E yj E .fEiCYij.
j=1 i—=1

Since oy = ay; for all 4,7 =1, ..., n,

n n n n
E Yj E Tilj = E Yj E TiQji
J=1 i=1 j=1 i=1

=y (Az)
= (Az) -y

where the last equality follows from R™ being a real inner product space. Since z,y € R"
were arbitrary, = - (Ay) = (Az) -y for all z,y € R™.

(¢-) Suppose z - (Ay) = (Ax) -y for all z,y € R*. Denote A = («;;), and let x = (z;)



and y = (y;) be vectors in R™. Then, Ay = (b;) where b; = >_
z- (Ay) = Z ;b
i=1

= Z Z T;0G5Y;

i=1 j=1

= Z Z Qi T3Y5-

i=1 j=1

Also, Az = (¢;), where ¢; = Z?:l a;jz; fori=1,...,n and
(Az) -y = Zciyi
i=1

= Z Z QT 5Y; -

i=1 j=1

n

Changing the indices on this second inner product to match x - (Ay), gives that

(Az) -y =D ayzy

i=1 j=1
n n

:E g Qi
j=1 i=1

So, since x - (Ay) = (Ax) - y, we have that

n

Z Z QY5 = Z Z QiTiYj

i=1 j=1 j=1 i=1

o1 Qujyy for i =1, ..

(1)

forall z,y € R™. Leta,b € {1,...,n} and pick x,y € R", 2 = (21, ..., 2,),y = (Y1, .., Yn), Such
that , = 1 and z; = 0 for ¢ # a, and y, = 1 and y; = 0 for j # b. Then, this equality gives
us that a., = ape. Since (1) holds for all z,y € R™, ay, = ap, holds for all a,b € {1,...,n}
by picking xz,y € R" in a similar manner. Thus, o;; = «; for all i,j € {1,...,n}, so A is

symmetric.

(b) A symmetric matrix A is called positive definite if z - (Axz) > 0 for all z € R", x # 0.
Show: A function (,) from R"™ x R" into R is an inner product on R" if and only if there
exists a positive definite symmetric matrix A such that (x,y) = x - (Ay) for all z,y € R™.

Proof.



(—) Suppose (,) from R™ x R™ into R is an inner product on R". Let z,y € R",
where © = (z1,...,x,) and y = (Y1, ..., Yn). Then, z = z1e; + ... + zpe, = > x;6; and
Y = y1€1 + ... + Ypen = Yo, Yi€i, where ey, ..., e, denote the standard basis of R". By the
distributive law, we have that

<$, y> = <Z ZiCi, Zyj€j>
= ZZ(%ei,yﬂj)

i=1 j=1

= Z Z z;y; (€, ;).

i=1 j=1
Pick A to be a matrix such that o;; = (e;,¢;) for 4,5 =1,...,n.

Then, (z,y) = > 1L, > oy Tiyjaiy; = o - (Ay). Now, we must show that A is symmetric
and positive definite.

By the symmetry of the inner product, (x,y) = (y,z), so x - (Ay) = (z,y) = (y,z) =
y - (Az). By part (a), A is then a symmetric matrix. By the positivity of (,), we have that
(u,u) >0 for all u € R", u # O, so A is positive definite. Therefore, A is a positive definite
matrix that satisfies (z,y) = x - (Ay) for all z,y € R".

(¢—) Suppose there exists a positive definite matrix A such that (x,y) = x - (Ay) for all
x,y € R". Let x,y,2z € R", and a € R.

(i) Since A is symmetric, z - (Ay) = (Az) - y by part (a). Also, since the Euclidean
inner product is an inner product on R", - is symmetric so (Az) -y = y - (Az). Thus,
(5,y) = - (Ay) = y - (Az) = (g,2), 50 () is symmetric.

(ii) Since the Euclidean inner product is an inner product on R, (ax)-(Ay) = oz (Ay)].
So, (az,y) = (ax) - (Ay) = oz - (Ay)] = a(z,y), so the associate law holds.

(iii) Again, since - is an inner product on R™ we have (v + y,2) = (x + y) - (4z2) =
[z (Az)] + [y - (A2)] = (x, 2) + (y, z). Thus the distributive law holds for (,).

(iv) Since A is a positive definite matrix, v - (Au) > 0 for all u € R, u # O. Let x € R™,
x # Q. Then, (z,x) =z - (Az) > 0, so (,) is positive definite. Thus, (,) is an inner product
on R™.



A.1.3. Let A be a positive definite symmetric n x n matrix and - denote the inner
product on R".
Show: |z - (Ay)|* < [z - (Az)][y - (Ay)] for all z,y € R™ with equality holding if and only if =
and y are linearly dependent.

Proof.

Let A be a positive definite symmetric n x n matrix. To prove this inequality, we will
first show that (,) defined by (x,y) = x - (Ay) is an inner product on R". Let z,y,z € R™
and a € R.

(i) We have that (z,y) =z - (Ay) =y - (Az) = (y,x) from the result of A.1.2(a) and the
commutativity of the inner product on R. So, (z,y) = (y, z).

(ii) We can use the fact that - is an inner product on R" to rewrite (ax,y) as follows:

{ax,y) = (ax) - (Ay) = alr - (Ay)] = afz,y). So, (az,y) = alz,y).

(iii) Comsider (x +y,2) = (v +y) - (Az). Again, since - is an inner product on R",

(z+y) - (Az) = [z - (A2)] + [y - (A2)]
= (2,2) + (¥, 2).

Thus, (x +y,z) = (x,2) + (y, 2).

(iv) Let w € R™,w # O. Since A is positive definite, (w, w) = w- (Aw) > 0 by definition.
Thus, (w,w) > 0 for w # O.

Therefore, we have that (,) is an inner product on R". Applying the Cauchy-Schwarz
Inequality (Theorem A.2), we have that for all z,y € R",

[(z, )| < (z,2)(y,y) or equivalently,

|z (Ay)[* < [+ (A)][y - (Ay)],

with equality if and only if x and y are linearly dependent.

<
<



A.1.4. Consider 2 = {z = (z,) € CV;||z||]> < oo} where
][5 =) |zal?
n=1

Show:

(a) For each z = (z,,) and y = (y,,) in 2, the series

Z xk’gk = <.’L’, y)
k=1

converges in C (with absolute value) and defines an inner product on 2.
Proof.
We first show that ¢2 is a linear subspace of CY. Let z,y € ¢?> and o € C.

(i) Since ||z|]2 < oo, there exists ¢ € R, ¢ > 0 such that ||z]]s = /D> =, |za]? < ¢, s0
x]|3 = D207 Jn|? < ¢ So, for allm € N, 3™ |z,|> < % Then, for all m € N,

m m
D azal> =D faf o
n=1 n=1
m
= o> |zal?
n=1

< |af?c.
Since this is true for all m € N, > |ax,|[* < |a]?c®, so |laz|ls = /Doy Jax,|> <
V]a|2c? < oo, meaning that ax € (2.

(i) Since ||z|]2 < oo and ||y||s < oo, there exists ¢,d € R, ¢,d > 0 such that ||z||; =
Yo [2n? < cand [yllz = /320 fyal® < d, so ||2[]3 = 3007 anf® < ¢ and [[y|[3 =
S0 lynl? < d?. Then, for all m € N, 37" |z,* < ¢ and > |ya|* < d?. So, for all



Z|xn+yn|2 Z|:cn+yn| [0 + Yl

[zl ([0 + ynl) + lynl (20 + yal)

M= 1

3
Il
—

[znl ([2n] + 1ynl) + [ynl ([2n] + [yn])

NE

3
I
—_

|37n|2 + 2[xp| |yn| + ’ynP

||M§

< +20d+d2

Since this is true for all m € N, 300 | |z, +yn|? < 24+2cd+d?, s0 ||z+y|l2 = /Doy |20 + Ynl? <
V2 + 2ed + d? < 0o, meaning that x +y € ¢2. Thus, £2 is a linear subspace of CN.

Now we must show that the series

> o = (@)
k=1

converges in C for each z = (z,,) and y = (y,,). Let z,y € ¢*, so x = (x,) and y = (y,,) since
x,y are sequences. Also, ||x||z < oo and ||y||2 < oo since z,y € 2. So, there exists ¢,d € R,

¢,d > 0 such that ||z||ls = /D o7 |zal? < cand ||yl = /Doy [Un]? < d, and by extension,
|2]13 = 32020 [zal? < ¢ and [|y[[5 = 2207, |yal* < . So, for all m € N, 3770 [z, |* < ¢
and Y| |yn|* < d*. Then, by the triangle inequality, we have

|Z$kyk| < Z|$kyk|
k=1
=D laxl 5
h—1

[zk] |yk]-

I
NE

i

1

Note that we can bound Y ;" | |zx| |yx| by looking at the relation between |zy| and |y
for each k = 1,...,m. If |zz] < |yi| for a given k = 1,...;m, then, |zg| Jyp| < |yel®> If
|zx| > |yx| for a given k = 1,...,m, then, |zx| |yx| < |7x]?. So, combining these two, we get
that > |zl Jukl < Doi (Jael? + |yk?) < & + d? for all m € N. Thus, | >0, zxtk] <
S |kge] < ¢+ d? for all m € N. So, the partial sums | >_;" | z;9x|, which is a non-
negative series, is bounded for all m € N. Thus | > 2, 2y < ¢ 4+ d?, meaning that



| > oo wxYk| converges in C with the absolute value by Theorem 2.38. Now, we must prove
that (,) defines an inner product on the vector space (2.

(i) Let =,y € ¢2. Note that (y,z) exists since z,y € CV, so >, | yxT), converges. Then,
we can apply the complex conjugation over the sum as follows:

(y, ) = (y,z)

Thus, (z,y) = (y, ).

(ii) Let 2,y € ¢* and « € C. Since Y ;- 23, =: (x,y) converges, we have that

Thus, the associative law holds.

(iii) Let z,y,z € (2. Since > o, 2% =: (x,z) converges and » o yxZx =: (y,z) con-
verges, we have that

(,2) + (y,2) = Ziﬁkzk + Zykzk
k=1 k=1
= Z(!Ek + Yk)Zk
k=1
=(r+y,2)

Thus, the distributive law holds for ().



(iv) Let « € ¢ such that x = (z,,) is not the zero sequence. Then, (z,z) = Y 77 TxTy
since this series converges in C with the absolute value. Since z = (x,) is not the zero
sequence, there exists some j € N such that z; # 0. So, (z,z) = > o, T, > x;7; > 0.
Thus, (,) is positive definite. Therefore, the series defines an inner product on ¢2.

(b) ¢* with this inner product is a Hilbert space.
Proof.

Let (x,(k))ren be a Cauchy sequence in %, with k being the index for the sequence
(So, z, is a sequence in ¢* and for a fixed n, (2,,(k))ren € €%). Let € > 0. Then, there exists
N € N such that for all n,m > N, ||z, — 2 |l2 < /5, 50 ||, — 2[5 < §. We also have that
l2n — 23 = 3520 [2n(k) — 2m(K), s0 € > [|an — 2|3 > [zn(k) — 2m(k)| for any k € N
and n,m > N. This implies that (z,) is a uniform Cauchy sequence on N. By Remark 2.21,
(x,(k)) is a Cauchy sequence in C. Since C with the absolute value is a complete metric
space, for each k € N, there exists z(k) € C such that z,,(k) — z(k) as n — oo.

Consider the sequence z = (2(k))gen. Let j € N. Since (z,,) is a Cauchy sequence, there
exists M € N such that for all n,m > M, ||z, — @ull2 < 5. So. /S0, [#a(k) = 2 (B2 <
V2ot (k) — 20 (k)[> < §. Since z,(k) — z(k) as n — oo for each k € N, there exists
some my; € N such that |z, (k) — (k)| < NG S0, 0w (k) — 2(k)|? < %,

and \/Z Lzn(k) = 2(k)|? < § for all n > my;. Let m > max{my;, M}. Then for all j € N
and n > M, we have

D lan(k) = 2(k)[2 = Z [ (K (k) + 2zm (k) — 2(K)[?
k=1

J J

<\ S lan(k) = (B2 + | S (k) = 2(R)P
k=1 k=1
< g + g =

Since this holds for all j € N, /> 77 |z,(k) — z(k)|]> < €, meaning that ||z, — z|]z =
VD opey len(k) — 2(k)]? < € for all n > M. Thus, since M does not depend on k, (z,)

converges uniformly to z.

Now, we must show that z € (2. Consider Y ,*, |2(k)[* = D1, |limy, oo z,,(k)|*. Since
(2,(k))ren is a Cauchy sequence in 2, (z,(k))ren is bounded in 2. So, there exists ¢ > 0
such that for all n € N, ||a,]l2 = /D _pey [2n(k)]? < ¢ Then, ||z,]|53 = D re; lza(k)]? < 2.
So, for all m € N and n € N, Y 7" | |z,(k)[* < ¢ Then, by the definition of limit, for
allm e N, 37 z2(k)2 = Yo, | im0 2 (K)|* < 2. Since this holds for all m € N, by

10



Theorem 2.38, we have that Y -, |2(k)|* converges. So, ||z]]3 = >, |2(k)|* < 0o, meaning
that ||z]|o < co. Thus, 2z € (2. Therefore, z,, — 2z as n — oo and z € 2 so (? is a Hilbert
space.

11



A.1.5. Let X be an inner product space over K and (x,), (y,) be Cauchy sequences in
X. Show: The sequence ((z,,y,)) converges in K.

Proof.

Let € > 0. Since (x,), (y,) are Cauchy sequences in X, there exists N, M € N such that
||z — zm|| < € for all n,m > N and ||y, — ym|| < € for all n,m > M. So, we have that
||z — || — 0 as n,m — oo and ||y, — ym|| — 0 as n,m — oo. Note that for all n,m € N,

<xn7yn> - <xma ym> = <$nayn> - <xm7yn> + <xma yn> - <$ma ym>
= <xn - xmvyn> + <xm7yn - ym>

30, (s ) — (s Ym)| = [{n — T Y} + (T Yo — Yo} By the triangle inequality and
the Cauchy-Schwarz ineqaulity,

|<xn - xm>yn>| + |<Imayn - ym>|
zn = ol yall + NZm!| [Yn — Yml]-

(T, Yn) = (T, Ym)|

VANRVAN

Since [[zn =z || = 0 and |[yn—ym|| = 0as n,m = 00, [[zn—zm|| |[yn|[+[[zml] |[yn—ym|] = 0
as n,m — oo. Thus, |(zn,Yn) — (Tm, Ym)| — 0 as n,m — oo, so ((xn,y,)) is a Cauchy
sequence in K. Since K = C or K = R, K with the absolute value is a complete space. Thus,
since ({x,,yn)) is a Cauchy sequence in K, ((z,,y,)) converges in K.

12



A.1.6. Let X be an inner product space and z, y be points in X, a € K, and (x,,), (y,)
be sequences in X and («,) a sequence in K.

Show: If x, — x, y, — y and o, — a as n — oo, then (v, z,,y,) — (azx,y) as n — oo.

Proof.

Suppose z,, = =, ¥, — vy, and a,, - a as n — oo. Let € > 0. Since x,, = x as n — 00,
each component of z,, x%ej, where e; is the jth canonical basis vector, converges to the same
component in z, 2’e;. So, for each j, 2/, — 27 in K as n — oo. By the limit properties
of K=Cor K =R, a,2/, = az/ as n — oo for each j. So, a,z, — ax as n — oco. So,
there exists N € N such that for all n > N, ||a,z, — az|| < m Since a,x, — ox as
n — 00, a,x, is bounded for all n € N. So, for all n € N, ||a,z,|| < ¢, for some ¢ > 0.
Since y, — y as n — oo, there exists M € N such that for all n > M, ||y, —y|| < 5. Pick
L = max{M, N}. Then, for n > L,

|<anxna yn> - <Oél', y>|
= |<Oénxmyn> - <anxm y> + <Oénxm y>| - <OJLU, y>|
= |<anxnayn - y> + <Oénxn - a$ay>|

< ||lanxnl| [lyn — yl| + ||anzn — az|| ||y|| (Cauchy-Schwarz)

< @] == + = [|y]]
anxn - PNTEET
2¢ " 2y VY

<6+€
-2 2

= €.

Thus, (nTn, Yn) — (ax,y) as n — 0.

13



A.1.7. Let X be an inner product space, + € X and (z,) a sequence in X. Show:
x, — x as n — oo if and only if ||z, || = ||z|| and (z,,z) — (x,z) as n — 0.

Proof.

(—) Suppose z, — x as n — oo. Let ¢ > 0. Then, there exists N € N such that
||z, —z|| < e for all n > N. By the reverse triangle inequality, € > ||z, —z|| > | [|zn|| —||2|| |
foralln > N. So, ||z,|| = ||z|| as n — oco. Since x,, — x as n — oo, there exists M € N such
that ||z, —z|| < oy for all n. > M. Then, [z, z) — (z,2)| = |[(xp —z,2)| < ||z, —2|| ||2]] <

ﬁ ||z|| = € by Cauchy-Schwarz. Thus, ||z,|| — ||z|| as n — oo as well.

(<) Suppose ||z,|| — ||z|| and (x,,z) — (x,z) as n — oco. Then, (z,,z) — (z,x) =
||z]|? as n — oo.

= (Tp — T,T, — )
= <.Tn,ZL‘n> - <£En,$> - <xaxn> + <£E,3$>
= |

|Zal[* = (@, @) — (@, 20) + 2]

So, ||z, — ;1:“2

Then, as n — oo, the above equation,
lzall* = (@n, 2) = (2, 20) + [J2|* = [2|* = |=]]* = []2|* +]|z[]* = 0.

So, as n — 00, ||z, — z||* = 0. Therefore, ||z, — z|| — 0 as n — oo, meaning that x, — =
as n — 0.

14



A.1.8. Let X be an inner product space. Let y € X be fixed but arbitrary. Define
fig: X —Chby

flx) =(2,y), 9(x) = (y,x), v € X

Then f and g are Lipschitz continuous with Lipschitz constant ||y||.
Proof.

Let x,z € X. Let d be the metric induced by the norm on X.

Then, |f(z) = f(2)] = [{z, y) = (z,)]

=z = 2,9)|
< [l = 2|[ {]yll
= d(z,z) [yl

by the Cauchy-Schwarz inequality. Thus, |[f(z) — f(2)] < ||ly|| d(x,z), so f is Lipschitz
continuous with Lipschitz constant ||y]|.

To show g is Lipschitz continuous, again let x, z € X.

Then, [g(x) — g(2)|

<y,$> - <y7 Z>|
<l‘, > - <Z7 |
) = (z,9)

(z,

<
<
~—

I
S

from the distributive law and properties of the complex conjugate.

Then, |(x,y) — (z,y)| = |{x — z,y)|
(y, x — 2)|

from the distribute law and the properties of an inner product.

Finally, |(y,x—2)| <||y|| ||z—=|| = ||y|| d(x, z) by the Cauchy-Schwarz inequality. Thus,
lg(z) — g(2)] <||y|| d(x, z). So, g is Lipschitz continuous with ||y|| a Lipschitz constant.

15



A.1.9. Let M be a complete linear subspace of the inner product space X.

Show: Each vector v € X has a unique representation u = v + w such that v € M and
(w,z) =0 for all z € M. (The vector v € M is called the orthogonal projection of u on M)

Proof.

By Remark 1.10, linear subspaces of a vector space are convex, so M is convex. Let
u € X. Then, by Proposition A.9, for each vector u € X, there exists a unique v € M
such that d(u, M) = ||lu — v||. Let w = u —v. Now, we must show that (w,z) = 0 for
all z € M. Let z € M with ||z|]| = 1 by normalizing u,v, and w to z. Let a € K and
consider ¢(a) = ||w — az|[®. Then, ||w — az||* = |jlu — v — az|]*> = ||u — (v + az)||>. Since
v,z € M and o € K, v+ az € M by definition of a linear subspace. Since v € M
is the unique vector in M such that ||u — v|| = d(u, M) = inf ep{|lu — yll;y € M},
llu — (v + az)|| > |Ju —v||. So, the minimum of ¢(a) = ||w — az|]* = |Ju — (v + az)||?
occurs at o = 0 since ||u— (v+az)||* > ||u—v||? for all @ € K. Therefore, ||w—az|| > ||w|*
for all o € K.

Also, ||w — az||* = (w — az,w — az)
= (w,w) — (az,w) — (w, az) + (az, az)

||w||2 — alz,w) — afw, z) + |a* [|2].
Consider « = (z,w) € K.

Then, ¢((z, w)) = |lw — (z, w)z||*
= [lwll* = [z, w)* = Kw, ) + [{z, w)[* [] ]|
= |[wll* = [(w, 2)|* = Kw, ) + [{z, w)[* | 2]]*
= [lwll* = [(w, 2)[*.

However, since ¢(a) = ||w — az||* has a minimum of ||w|* at a = 0, ¢({z,w)) > |Jw|*.

Therefore, |(w, z)| = 0, meaning (w, z) = 0. Since z € M was arbitrary, (w,z) = 0

ze M.

To show uniqueness, suppose there exists vy, vy, wy, wo such that u = vy + w; = vy + wo
with v; € M and (w;,z) =0 for all z € M and i = 1,2. Since (w;,z) = 0 for all z € M and
v1, vy € M, we have that 0 = (wq,v1) = (wq,v1) = (w1,v2) = (we,vy). Since wy = u — vy
and wy = u — vy, these equations give the following equations:

0= (wy,v1) = (u— vy, v1) = (u,v1) — (vy,v1)
0 = (wq,v1) = (u — v9,v1) = (u,v1) — (vg,v1)
0 = (wy,v2) = (u — vy, v9) = (u,vy) — (v, v2)
0 = (wq, v3) = (u — vg,v9) = (u,vy) — (v, v7)
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So, these equations give us that

S
=

{
{
{
{

RS
<
v

From the above four equations, the first two equations give that (vy,v1) = (v, v1), or equiva-
lently, (v1—v9,v1) = 0. The second two equations give that (vy, ve) = (ve, v9), or equivalently,
(v1 — v9,v9) = 0. So, (v; — vg,v7 — v2) = 0. Thus, from the positivity of an inner product,
v — vy =0, ie. v1 = vy.

Since wy; = u — v; and wy = u — vy, We can also rewrite the equations as follows:

0= (wy,v1) = (wy,u —wy) = (wy,u) — (wy,w)
0 = (wy,v1) = (wo,u — wy) = (we, u) — (Wwe, wy)
0 = (wy,v2) = (wy,u — wy) = (wy,u) — (wy, ws)
0 = (we, v2) = (wo, u — wy) = (W, u) — (W, ws).

Once again, combining the first two equations (of the four above) yields that (w;,w;) —
(wy,we) = (wy,w; — we) = 0. Combining the second two equations yields that (ws,w;) —
(wg, wy) = (we,w; —we) = 0. So, (w; — wy,w; — wy) = 0. Thus, from the positivity of
an inner product, w; — we = O, i.e. w; = wy. Therefore, v1 = vy and w; = wy, so the
representation of u is unique.
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