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Brian Sweeney

2.7 Use Poisson’s formula for the ball to prove

n—2 I — |LU’
(r + [z|)*

n—2 T+ ’JI|

whenever u is positive and harmonic in B°(0,r). This is an explicit form of Harnack’s
inequality.

Proof.

Poisson’s formula for the ball is

u(z) = ﬂ/g 99 is(y), = € B0, 7).

na(n)r B(0,r) |z —y|
Using the average value over the integral, this formula can be rewritten as
uw) =2t o) Iy
oBO 1T —y["
Then, we can compute that
o =r Mgy — gasi)
B Y" oB(0,r)
since |y| = r on 0B(0,r). Additionally, we note that for y € 9B(0,r), |x —y| > ||z]| — |y|| =
l|z| —r| =r —|z| and |z — y| < |2| + |y| = r + |z|. Thus,
90 g5 < o) g5 < 90 g
oB(0s) (1 + |z|)" o800 [T — Yl oB(0r) (T —|2])"

Combining these facts, we have that

w2 T —|7] w(0) = 72 r—|z|
el O T G RT nn YW
— pn2 r’ — |ZL‘|2
ST anon Y
_T,n72r2_x2 g()
< - |:c12> O as()

B(0,r) |‘T - y|n

= u(x).



Similarly,

n—2 r + |[E| n—2 r + |:L‘|
I e B — S et ds
T T O =T TR s (VW)

_.n—2 7"2 _ |l’|2

T2 ome )g(y)dS(y)
—e2 o) I asasiy)
dB(0,r) (r—|=|)
> fat) W)

oB(o,) [T —y["
= u(x).

Thus, we have shown that

r+ |x|

u(0) <wu(x) <r" Wu(())

n—2 I'— ‘LE|
CEAT



2.23 Let S denote the square lying in R x (0, co) with corners at the points (0, 1), (1,2),(0,3), (—1,2).
Define
—1 for (z,t) e SN{t >z +2}
flz,t):==<91 for (z,t) e SN{t <x+2}
0  otherwise.

Assume u solves
Uy — Uz = f In R X (0,00)
u=0,u,=0 onRx {t=0}

Describe the shape of u for times ¢t > 3.

Proof. Using Duhamel’s principle for the 1D wave equation, we have that the solution
to this nonhomogeneous problem is given by

tl xr+s 1 t T+s
U(fv,t)—/0§/ f(y,t—S)dde—g/O/ [yt —s)dyds.

This formula can be interpreted in a similar manner to the 1D wave equation, where u(z, t)
is equal to the integral of f over the triangular region in R x (0, 00) defined by the double
integral. From the way f is defined, if the entire square S is within this triangle, the integral
is zero since the two sections cancel each other out. Additionally, since S is divided by the
line t = x+2, any region that crosses this line perpendicularly will also integrate to zero since
different sections of f cancel out. This happens for triangles where x < —1. So, u(z,t) is
only nonzero when this triangular region contains only part of S, with the separate sections
not canceling out.

This happens in a region that is parallel to the line t = x + 2 in R x (0, 00), since (z,t)
in this region contain only part of S in a way that the values of f do not cancel out. In
particular, for these (z,t) the triangular region contains more of the positive section, and
the closer to the line ¢ = x + 2 this edge is, the larger the value of u(x,t). So, this gives a
wave along this corridor in R x (0, 00) that is one unit wide corresponding to the width of

S.

So, for times ¢t > 3, the shape of u is a mostly flat zero-valued function with a single
right-moving wave. This wave is centered at x =t — 2 and has width 1.



3.4
(a) Write down the characteristic equations for the PDE

u+b-Du=f in R" x (0, 00), (1)
where b € R", [ = f(z,1).

Proof. The characteristic equations are

ox; ot ou

or e b B

= f(z,1).

(b) Use the characteristic ODE to solve (1) subject to the initial condition
u=g on R" x {t =0}.
Proof. We will parameterize this initial condition by defining x;(0) = a. Then, the
initial conditions are z;(0) = a, t(0) = 0, and U(0) = g(a). So, we have three separable

PDEs with solutions given by
Z; (T) = blt +a

t(r)=r
U(zi(7),t(1)) =U(b;m 4+ a,7) = / f(bis+a,s) ds+ g(a)
0
Using the functions for z; and 7, we can deduce that 7 =t and a = x; — b;t. So,
t
(i t) = Uz, £) = / F(bis + 5 — bit, s) ds + g(as — bit)
0

= [ et (s = ) ds + gl b,
0

Thus, u(x,t) = g(x — bt) + f(f flx+ (s —1t)b,s) ds.



3.8 Confirm that the formula u = g(z — tF'(u)) provides an implicit solution for the conser-
vation law
u + divF(u) = 0.

Proof. We can compute that

u = —g'(x — tF (u))(F' (u) + tF" (u)uy)
= —¢'(z — tF'(u))F'(u) — ¢'(x — tF'(u) tF" (u)u;.
Then, solving for u;, we get that

g — tF(w)F'(u)
1+ ¢ (x — tF'(u))tF"(u)

Uy

Similarly, to compute divF(u), we have that

ua, = §'(x = tF'(u)) (1 = tF'(u)a, uz,)
g/

(x —tF'(u)) — ¢’ (x — tF' (u) )tF' (u) 4, ug, -

Then, solving for u,,, we have that

- Pw)
Tl g (e —tF(w)tF (u),,

Ug

So, divF(u) = F'(u) )", u,,, meaning that

g'(x — tF'(u))
1+ ¢'(x — tF'(u))tF"(u)’

divF (u) = F'(u)

So, we have that

. —9'(x — tF'(u)) F'(u) :
u; + divF(u) = T+ g/(w — F () (" () + F'(u)

=0.

g'(x — tF'(u))
14 ¢'(z — tF'(u))tF" (u)

Thus, the formula u = g(x — tF'(u)) provides an implicit solution to the conservation law.



4.1 Use separation of variables to find a nontrivial solution u of the PDE

2 2 0 a2
Ugy Ugyzy T 2Ugy Ugy Uy gy + U Ugyzy, = 0 in R

Proof. We will look for a solution of the form
u(zy, e) = g(x1)h(22).
S0, Uy, = G Ay Uy, = g Ug ey = "Ry Ugyey, = g Ug e, = g'R'. Thus, we have that
(g'h)*g"h + 2g'hgh'g'h + (gh')*gh” = 0.
Equivalently, this gives us that
(9')°9"h* +2(¢')* (W) *gh + ¢*(I')*h" = 0.

Dividing through by ¢3h3, we have that

(91)29// + 2(9/)2(h/)2 + (hl)QhN _ 0

g3 92h? 3 :

We can factor this into two terms as
(g/)Q g// (h/)2 (h/)Q (g/)2 h//
= —)=0.
92(g+h2>+h2(92+h)

Since we are looking for nontrivial solutions, ﬂ
equality we can look for functions g, h such that g + (h) = 0 and (g h” = 0. From the

first of these equalities, we get that
g// (h/)2
g TR

2

so we can separate the variables into two ODEs, 97/ = and — = p. For now, we will

assume g > 0. Then, we get that g(z;) = cieVF* + cye™ Vi and h(za) = cze’ i/ (w2 for
constants ¢y, ca, ¢3, .

Following a similar approach for the other condition ( ) + h—" = 0, we have that £

—%ﬁ — . If we assume and therefore h(zy) = cse¥V*2 + cse fx? and g(x1) = cge’ \/—’\)xl.

Notice that if we take A < 0, then g(z;) = 066\/@)‘)””1 and h(xy) = cge?V A2 4 cgem VAR
which are similar to the equations from the first condition. Now, since we want any solution
of this this PDE, we can take y =1 and —\ = 1. So, we have that from the first condition,

g(x1) = c1e™ + coe” ™ and h(zy) = c3e'™



while the second condition gives us that
9(171) = 06@351 and h([EQ) — C46i$2 + 056_1‘3;2'

Since we need our solution to satisfy both of these conditions, we need ¢ = ¢5 = 0, ¢; = cg,
and c3 = c4; then the solution will satisfy the PDE. So, we can take ¢; = ¢ = 1, and
c3 = ¢y = 1, giving us that g(z;) = ¢ and h(zy) = ¢**2. Thus,

u(xlaxQ) = g(xl)h(xQ) = 690161'902 — 65E1+ix2
is a solution of the PDE.

To check that this is indeed a solution, we note that u,, = Uy, = U, Uy, = U, Ugyy, =
—u, and Uy, ., = u. S0, we have that

2 g+ Qg gty + 0ty = P 2ui) (i) + (i) (—u)
=u’ — 2u® + u?
= 0.

Thus, u(zy, z2) = 12 is a solution of the PDE.



4.7 Consider the viscous conservation law
u + F(u), —aug, =0 inR x (0, 00),
where a > 0 and F' is uniformly convex.

(a) Show w solves (2) if u(z,t) = v(z — ot) and v is defined implicitly by the formula

v(s) a
= —d R
° /C F(z)—az+bz(sE )

where b and c are constants.
Proof. For u(z,t) = v(x — ot), (2) becomes
—ov' + F(v)v — auy,, = 0.

From this, we can see that —ov + F'(v) — av’ must be constant, so —ov + F(v) — av’
—ov+F(v)+b

for some constant b. So, v/ = -

. We can rearrange this equation as

1 a
v —ov+ F(v)+b

Then, we can integrate both sides from v(0) to v(s) to get that

v(s) ds v(s) a
@ o = vy
/1;(0) dv v /v(O) F(Z) — 0z + b =

where ﬂj((os)) Z—f}dv = s — 0 =s. Thus, we get the implicit formula for s defined by

o(s) "
- S —
° /U(O) F()—oz+b"

So, v(0) = ¢ as some constant, we have that

v(s) a
_ [
° /C F(z)—oz+b ‘

is implicit formula for constants b and ¢ that provides a solution to (2).



(b) Demonstrate that we can find a traveling wave satisfying

lim v(s) =, lim v(s) = u,
S§——00 5—00

for w; > u,, if and only if
Fu) — F(u,)

Up — Uy

Proof. (—) Suppose lim,_,_, v(s) = w and limg_,, v(s) = u,. This means that we have
horizontal asymptotes, so lims_, 1+ v'(s) = 0. From (a), we found that —ov+F(v)—av’ = —b.
So, as s — oo, this gives us that —ou, + F(u,) = —b. Similarly, as s — —oo, this gives us
that —ou; + F(u;) = —b. Combining these two equations, we have that —ou, + F(u,) =
—ou; + F(u;) or equivalently,

_ F(u) - Flu,)
=
(<) Suppose ¢ = % To show that we can find a traveling wave solution, v,

satisfying
82131001)(5) = uy, slggo v(s) = uy,
we must first consider the first-order ODE from part (a) and show that a profile v exists that

connects an unstable equilibrium to a stable one. From part (a), we have that a traveling
—F(ul)iF(ur)”U-‘rF(’l))—f-b

U —ur

wave solution must satisfy that v' =
we get the following first-order ODE:

for some constant b. Rearranging,

__Flw) = Flu)

av’ = — v+ F(v) +b.
Uy — Uy
The equilibria of this ODE occur when —W@ + F(v) +b = 0. We can rearrange this
as F(v) = %v — b so that the right-hand side of the equation is linear with a slope

equal to the average slope of F' between u, to u;. In order for a traveling wave solution to
exist with the desired limits, we need the two equilibria to be u; and u,, with u; > u,. To
check that such a wave exists, we will first choose b so that u, is an equilibrium and then
show that wu; is also an equilibrium.

So, if we choose b appropriately so that w, is an equilibrium, we have that

F(U,T) _ F(Ul) — F(UT)UT _ b,

U — Uy

so b = Le=Fl), g (u,). Substituting this value of b back into the the equilibrium

Uy —ur



condition, we get that

Fw) - Fuy) =~ Flu) = Fuy)
Up — Up Uy — Up

_F(ul)_F(ur)v_u — Flu
= PO =P ) B

F(U) = Uy — F(“r)

So, this implies that if v satisfies
F(v) = F(u,)  F(u)— F(uy)

v — U, u — uy
then v is an equilibrium. From this equality, we see that u; is also an equilibrium for this
choice of b. So, if we choose b so that u, is an equilibrium, u; is automatically an equilibrium
as well.

Now, we must show that in this case, the traveling wave satisfies the limit conditions.
Since F is uniformly convex, F(v) < Zed=Fny, b for all v € (u,,w) and F”(v) > 0 for

U —Up

all v. This means that for u, < v < wy, Pl)=Flur),, g F(v), while for v < u, or v > wuy,

Up— Uy
Wv — b < F(v). Then, since a > 0, this implies that v" < 0 for u, < v < u; and

v’ > 0 for v < u, or v > u;. Thus, v = u, is a stable equilibrium and v = u; is an unstable
equilibrium for this ODE.

So, with this choice of b, we can find a solution, v, that connects u;, which is an unstable
equilibrium of the ODE, to u,, a stable equilibrium of the ODE. With any initial condition,
Vg, such that u, < vg < wu;, the solution goes to u, as t — oo and goes to u; as t — —o0.
Thus, we can find a traveling wave solution such that

lim v(s) =, lim v(s) = u,.
S——00 S—00

10



U — Uy

(c) Let u® denote the above traveling wave solution of (2) for a = ¢, with u(0,0) = “5
Compute lim,_.o u¢ and explain your answer.

Proof. From the integral,

v(s) a
- S R
° /C F(z) —oz+b :

F(w) — F(u,)

Y

with

Up — Uy

we consider v(s) € (u,,u;). As v(s) — u or v(s) — u,, the denominator goes to 0, meaning
that s — Foo. So, we can fix s # 0 in this formula, substituting a = €. So, we have

S ue(s) 1
- = —dz.
€ /C F(z)—oz+b

Taking the limit as e — 0, the LHS goes to 00 depending on the sign of s, so on the RHS,
u¢ — u, or u¢ — u; depending on the sign of s. So, as € — 0, this solution u¢ converges to

our implicit traveling wave solution v from parts (a) and (b) with initial condition u<(0,0) =
utur
S

11



Extra Problems

1. Apply separation of variables to the Telegraph equation, pg 4, to find solutions that are
bounded for all x and all positive ¢.

Proof. The telegraph equation is given by
Ut + QdUt — Ugye = 0.

We will apply separation of variables to look for a solution of the form wu(z,t) = g(z)h(t).
With this form, the telegraph equation becomes gh” + 2dgh’ — ¢”"h = 0. By factoring out g
from the first two terms and rearranging the equation, we get that

h//+2dh/ B g//

h g

for some constant p. These equations are equal to some constant because the equality holds
for all (z,t). Using this fact, we can separate this equation into two ODEs, ¢” = pg and
'+ 2dh’ = ph.

For ¢" = pg, we get that g(z) = ¢;eVF® + coe™VF* for some constants ¢y, cy. For h” +
2dh = ph, we can write out the characteristic polynomial m? + 2dm — p = 0 and get that

m = —d £ \/d? + pu. So, h(t) = cge” TV PH L ¢ e P+ for some constants ¢, ¢4.
Thus, we have solutions to the telegraph equation given by
u(z,t) = g(x)h(t) = (cle\/’h + CQe_W”C)(Cge_dHtV Pty coe” Mty d2+“).

These solutions are bounded for all z and positive ¢t. Taking p, ¢y, co, c3,c4 = 1, we can obtain
an explicit bounded solution to the Telegraph equation

_ 2 o 2 i 2 i 2
U(l’,t) — ¢ dt+tvd +1+€ r—dt+tvd +1+6x dt—tv/d +1+€ r—dt—tv/d +1‘

12



2. Use the Fourier transform to solve the Telegraph equation with initial data u(x;0) = f(z)
and u;(z;0) = g(z). What must you assume about f,g?
Proof. As in the previous problem, the telegraph equation is given by
Ut + Qdut — Ugy = 0

In order to use the Fourier Transform to solve this equation, we must assume that we can
take the Fourier Transform of the initial conditions. So, we must assume that f, g € L*(R™.
Then, taking the Fourier Transform with respect to the spatial variables, we get that

Gy + 2d, + |y[*a = 0

with initial conditions u = f and u; = g. We can solve this ODE using the characteristic
polynomial m? + 2dm + |y|* = 0, giving us that

—2d £+ \/4d? — 4]y|?
m= 5 1 = —d=+/d?>—|y|]%

Since y is a variable, this value may be real or complex depending on y. So, we must consider
both of these cases, meaning that the general solution of this ODE is

(. eIV EZWE 4 6 e= Vd2 W) for |y < d
Uu =
v 1TV EWRIE 4 o oGNP for y| > d

for some constants ¢; and c¢o. To enforce the initial conditions, we choose ¢; and ¢y to satisfy
that

~

f261+62

so that @ = f at t = 0. Additionally, we need i; = ¢, so differentiating u with respect to ¢
and setting t = 0, we get that

(. 0) = h(y) = LA ATVE ZIP) Fea(—d = /@ —yl?) for y| < d
) (—d +i\/d? = [y[2) + co(—d — in/d? — [y|?) for |y| > d

So, by choosing ¢; and ¢ to satisfy these conditions, we can then take the inverse Fourier
Transform of both sides and obtain that

U(l’, t) _ 1 / ezmyc 6( —d++/d?2—|y|?)t + eiggche(_d_, /d2—|y|2)t
{lyl<d}

. TN E T . . e
/ ezzycle( d+iv/d?—|y|?)t + ezzyCQe( d—iv/d?—|y|?)t
{

ly|>d}

(& ; 2 _|y|2 ; 2 _|y|2
_ / N M e
{lyl<d)

- (267r)1/2 / Cr e VTNV EWE o girymit/ o,
{lyl>d}

This is a solution to the Telegraph equation using the Fourier Transform.

13



	Blank Page



