
RSA Cryptosystem

The RSA cryptosystem is a example of a “public key” system. This means that
everyone can know the encryption key, but it is computationally infeasible for an
unauthorized person to deduce the corresponding decryption key.

In the case of RSA, here is how it works. Alice makes known two numbers, N
and e which she has selected carefully. Then Bob can use these numbers to encode
a message and send it to Alice. A third party Oscar has free access to N , e, and
the encoded message. It should be essentially impossible for Oscar to decode the
message, but Alice can decode the message easily because she knows a secret.

At the center of the RSA cryptosystem is the RSA modulus N . It is a positive
integer which equals the product of two distinct prime numbers p and q:

RSA modulus: N = pq.

So 55 = 5 · 11, 119 = 7 · 17, and 10403 = 101 · 103 could each be used as an
RSA modulus, although in practice, one would use much larger numbers for better
security, to be explained below.

Also needed is an encoding exponent e. The only requirement on e is that

(1) gcd(e, (p− 1)(q − 1)) = 1

Typically, e is choosen first, and then Alice picks p and q so that equation (1) holds.
Most cryptosystems used in the ASU CryptoRally use a standard method for

converting the initial message to numbers, and then the real encoding happens with
numbers. The same is true of RSA, but the transition between text and numbers
is more complicated. Here we will focus on encoding/decoding numbers in the set
{0, . . . , N − 1}.

One bit of notation before we begin: if a and b are non-negative integers, we will
write a mod b for the remainder when a is divided by b. It is the unique integer r
such that 0 ≤ r < b and b− r is a multiple of a.

To encode a message m, Bob computes the remainder when me is divided by N :

Encoding: M = me mod N .

This can be done efficiently by the square-and-multiply method described below.
To decode the message M , Alice uses the values p and q. After picking N and

e, she computes d by:

Decoding exponent: d = e−1 mod (p− 1)(q − 1).

This inverse is the same as is used in the Affine and Hill ciphers, and it can be
computed efficiently by the extended Euclidean Algorithm. Alice then decodes the
message by computing

Decoding: m = Md mod N .

We now see Alice’s secret: she knows p and q. In other words, she knows how to
factor N . In practice, she starts with two large primes p and q and multiplies them
together to get N . For RSA to be secure, N has to be hard to factor or else Oscar
can determine p and q, in which case he can also compute d and decode messages.

Here is an example with small numbers. Suppose the encoding exponent is
e = 17, and Alice chooses p = 5 and q = 11 so N = 5 · 11 = 55. Note, gcd(e, (p −
1)(q − 1)) = gcd(17, 4 · 10) = 1. Now suppose Bob wants to encode the “message”

1



2

m = 37. He computes

M = 3717 mod 55 = 27

Alice also computes d = e−1 mod (5− 1)(11− 1) = 17−1 mod 40 = 33. This can be
checked by computing

ed mod (p− 1)(q − 1) = 17 · 33 mod 4 · 10 = 561 mod 40 = 1.

Then she can decode the message:

Md mod N = 2733 mod 55 = 37.

Square and Multiply

Suppose a, e, and N are positive integers and we want to compute ae mod N ,
i.e., the remainder when ae is computed modulo N . The simplest approach would
be to compute ae by repeated multiplications, and then take remainders. This can
be made more efficient.

The first issue is that ae might be too large for the memory of a calculator
or computer, but the final answer could be small enough to fit in the calculator’s
memory. The second is that we want to do the computation with a minimal amount
of work.

The first issue can be resolved by using congruences. Here we will do the ex-
ponentiation naively, by repeated multiplications. Suppose we want to compute
123455 mod 54321. If we do the computation directly, we would get

123455 = 286718338524635465625

which is quite large. On the other hand, we can replace values with their remainders
for division by 54321 at every intermediate step:

123452 = 152399025 ≡ 28620 (mod 54321)

123453 = 12345 · 123452 ≡ 12345 · 28620 ≡ 10116 (mod 54321)

123454 = 12345 · 123453 ≡ 12345 · 10116 ≡ 52362 (mod 54321)

123455 = 12345 · 123454 ≡ 12345 · 52362 ≡ 43311 (mod 54321)

Since 43311 is congruent to our desired number modulo 54321 and is in the allowed
range for remainders on division by 54321 (namely, in {0, 1, . . . , 54320}), it is the
remainder.

When working modulo N , in each multiplcation along the way we only have to
deal with inputs from {0, 1, . . . , N−1}. So, the biggest product we have to compute
(before taking the next remainder) is less than N2. In the computation above, that
means our calculator needs to be able to hold integers up to 543212 = 2950771041,
a 10 digit number whereas 123455 is a 21 digit number. The difference is even more
dramatic with bigger exponents.



3

The second improvement makes computations much faster for large exponents.
Suppose we want to compute 1234521 mod 54321. If we used repeated multiplica-
tions, that means 20 multiplications. Instead, we start by doing repeated squarings:

123452 ≡ 28620 (mod 54321)

123454 ≡ (123452)2 ≡ 286202 ≡ 52362 (mod 54321)

123458 ≡ (123454)2 ≡ 523622 ≡ 35211 (mod 54321)

1234516 ≡ (123458)2 ≡ 352112 ≡ 46338 (mod 54321)

Now we use these values to get the final result:

1234521 = 123451 · 123454 · 1234516 = 12345 · 52362 · 46338 ≡ 1452 (mod 54321)

We used 4 multiplications in the squaring phase, and 2 more multiplications in the
last line, so a total of 6 multiplications, instead of 20.

The key to this method is in the last step where we used that 21 = 1 + 4 + 16 =
20 + 22 + 24. We wrote our exponent as a sum of distinct powers of 2. You can
do this for any positive integer, it is equivalent to finding the binary (or base 2)
expansion of the number.


