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APM 503 Master’s Portfolio Project

Properties of Inner Product Spaces

Lee Reeves

In this project, I supplement the coursework from APM 503, Applied Analysis, with addi-
tional work on inner product spaces, which were discussed in the supplementary material
in Professor Horst Thieme’s lecture notes, but were not covered in class. First, I will copy,
without proof, a few important definitions and theorems from those lecture notes, then I will
solve several exercises.

A.1 Definition. Let K =R or K = C. An inner product on a vector space X over K is a
function (u,v) — (u,v) from X x X into K with the following properties for all u,v,w € X,
ace K

(1) (u,v) = (v,u), which implies that (u,u) is real.

(17) (au,v) = alu,v). (associative law)
(131) (u+v,w) = (u,w) + (v, w). (distributive law)
(iv) (u,u) >0if u # O

These properties immediately lead to the following:

(v) (u,av) = a(u,v) and (au, av) = |a*(u,v), by (i) and (ii).
(vi) (u,v+w) = (u,v) + (u,w), by (i) and (iii).

(vii) (0,u) = (00, u) = 0(0, u) =

(viii) (u, Q) = (O,u) =0

A.2 Theorem (the Cauchy-Schwartz inequality). Let X be an inner product space.

If u,v € X, then
[{w, 0) < (u, u)(v,v)

with equality if and only if u and v are linearly dependent. Additionally, we define the norm
induced by the inner product
[ull =/ (u, w)

and with this notation, the Cauchy-Schwartz inequality takes the form
(u, v) < Jull [Jv]]

A.4 Corollary. If (,) is an inner product on a vector space X, then ||-|| given by |ju| =
(u,u) is a norm on X.



A.8 Theorem (the parallelogram law). A normed vector space X is an inner product
space if and only if its norm satisfies the parallelogram law

lu+ o2+ lu—o)® =2 |ul®*+2|v]* VYu,veX.

A.9 Proposition. Let M be a complete convex set in an inner product space X and u € X.
Then there exists a unique v € M such that d(u, M) = ||ju — v]|].

Exercises

A.1.1) Let X be a vector space with inner product (-,-) and associated norm ||-|.
2 2

a. (u,v) + (v,u) = 3(|lu+ vl = lu—o[f).

Proof. By the properties of inner products in definition A.1 and the definition of the norm
in equation A.1:

(u,v) + (v, u)
= % [2(u, v) + 2{(v, u)]
= &[G ) + o) + (0 + (0,0) — () + G0, ) + {u,) — {o,0))]
= % [<u7u> + <U,U> + <u7v> + <U7U> - (<u7u> - <U7u> - <U7U> + <U7U>)]
1
= 5[(u—l—v,u—|—v> —{(u —v,u —v)]
1 2 2
=5 e+l = llu =]
]
b. In a real inner product space, (u,v) = 3(||u + o|> = |lu —o|%).
Proof. In a real inner product space, (u,v) = (v,u) so by part a:
2(u, v) = (u,v) + (v,u) = %(HU +l)* = flu = ol*)
Thus:
(1,0) = (0t vl ~ flu = ).
]



c. If X is a complex inner product space,

(w0) = (v.0) = S(Jut iv]* — fu—iv]?)
and

<u7 U> =

Proof. 1f X is a complex inner product space:

A

(Ju + vl = flu— o)) * +i|ju+ vl —i|lu—iv]?).

wmywuw:%pmug—mwmﬂ

% [(u,u) + i{v,u) —i({u,v) + (v,v) — (u,u) + i{v,u) — i{u,v) — (v, v)]
% [(u,u) + (v, u) —i{u,v) + (v,v) — ((u,u) — i{v,u) +i{u,v) + (v, v))]

%mﬂwwmm+@m@+mmw—amm+¢mmmwmqm+ewﬁwm

[(u+ v, u+iv) — (u— v, u — V)]

DN | .

[Ju+ w|)* = |Ju — z'v||2] by definition of the norm.

N | .

Then:

(u,v) = i{u,iv) = %[(u, iv) — (v, u) + (iv,u) + (u, v)]
= §[<u,w) — (v, u) + i(v,u) — i(u, v)]

= 5[(<u,w) — (iv,u)) —i(—(v,u) + (u,v))]

i

N | .
DO |

)
(- ol = = ol = i (G -+ ol = = il )|
-1

= — [l = ol = flu+0l*) = (lu+ v = flu—iv]*)]
1 2 2 . .2 .2
= 7 [l =0l + flu+0[%) + i(llu + avll” — [u = év[|)]

1 : : : :
= 7 (lu+ol® = llw = o* + i [lu+ vl =i u—dv]).



A.1.2a) A real nxn matrix A = (qy;) is symmetric (meaning o;; = ay; foralli, j € {1,...,n})
if and only if x - (Ay) = (Ax) -y for all z,y € R™.

Proof. Let z,y € R", let A = (a;;) be a real n X n matrix, and let a subscript ¢ on a vector
denote the i** component of that vector. Then:

v - (Ay) = L 7i(Ay)i = Z?=1xi2?:1aijyj = Z?:12?:1xiaijyj
(Az) -y = X (Aw)jy; = Yy 80 gy = X5 X0 Y00
= If A is symmetric, then trivially for all z,y € R™:
x - (Ay) = X 20wy = N0 N g0 = (Az) -y

< If v (Ay) = (Az) -y for all z,y € R™, then let 4,7 € {1,...,n}, let & be ¢’ (the vector
with zeroes everywhere except for a one in the i component), and let y be e/. Then:

ay = wiagy; = x - (Ay) = (Az) -y = yja5a; = ayg
Thus a;; = aj; for all 4,5 € {1,...,n}, so A is symmetric. H

A.1.2b) A function (-, -) from R"™ x R™ into R is an inner product on R" if and only if there
exists a matrix A = («;;) that is positive definite (meaning x- (Az) > 0 for all x € R™, z # 0)
and symmetric such that (x,y) =z - (Ay) for all z,y € R™.

Proof.

= Let (-,-) from R™ x R™ into R be an inner product on R", and define A = («a;;) by
a;; = (€', e7). Then by the properties of the inner product:
x - (Ay) = S2ya5(Ay)s = Si S0 agpyy = SiqaSl_ (€, €)y;

= X255 (e yie) = Siywi(e,y) = Sy (e, y) = (2,9)
And then, trivially: x - (Az) = (x,x) > 0 for all z € R™ with « # 0, so A is positive definite,
and a;; = (e;, e;) = (e;,€;) = aj; so A is symmetric.

< Let A = (a;;) be a positive definite symmetric n x n matrix such that (z,y) = = - (Ay)
for all z,y € R". Let z,y € R™. Then:

r,y) =z (Ay) = (Az) -y =y - (Az) = (y, z) by part a,

(
(r+y,2) = (r+y)- (A2) = ( - (A2)) + (y - (A2)) = (2, 2) + (y, 2) and
(o
(z,

az,y) = (ax) - (Ay) = a(z - (Ay)) = a(z,y) by bylinearity of dot product;
x) =x - (Ax) > 0 because A is positive definite.
So (-, -) satisfies the definition of an inner product. O



A.1.3) Let A be a positive definite symmetric n X n matrix and - denote the inner product
on R™. Then |z - (Ay)|> < [z - Az][y - Ay] for all z,y € R™ with equality holding if and only
if x and y are linearly dependent.

Proof. Define (x,y) = x - (Ay). Then by A.1.2b, (-,-) is an inner product and this theorem
is an immediate consequence of the Cauchy-Schwartz inequality:

[z (Ay)|* = [(z, )] < (z,2)(y,y) = [z Ax][y - Ay]

with equality if and only if x and y are linearly dependent. O

A.1.4) Let 2 = {z = (z,) € CV;|z]|, < 0o}, where ||z]|3 = 3°°, |2,]>

a. For each x = (z,,) and y = (y,,) in (2, the series

Z TrYr =: <33, y)
k=1

converges in C (with absolute value) and defines an inner product on £2.

Proof. An inner product must live in a vector space, so I will first define this vector space.
Let x = (x,,) and y = (y,) be sequences in ¢? and «, 3 € C.

Define addition of sequences by (x+y), = x,+y, and scalar multiplication by (ax), = ax,.
The vector space properties follow immediately from the vector space properties of C, because
each index is independent. And these operations are closed in 2 because

T 2 . 2 _ 2
lox + Bylly = lim D Jawy + Bysf* < Tim > (| + |Byal)* = lim > (arlax| + Blyx])
k=1 k=1 k=1
— L 2 2 2 2 : 2 2 2 2
—1}1_{202(04 2k |” + 2a 8|zl |lyk| + B7 k] )Suh_g)loZ(oz 21| + B%yel?)
k=1 k=1
. 2 2 2 21 13 2 2 : 2 2
= lim (;a |z +;B || ) _1}1_{20;0‘ |z +uh_>r£1<>;6 |k

u u
=a? lim Y |+ 5% lim Y ful® = o® ||z ]l5 + 5 [ly 5 < oo

Taking square roots, we have |laz + By||, < 0o, so ax + By € (* and ¢? is a vector space.



Then for all k € N,

0 < (|l = lyel)* = lanl® = 2laellyel + lyel* and |zxgi| = |zxllyx],
and therefore |zxik| < (|21]? + yx|?*)/2, and

.\ o P w1 > 2|2 ||y 12
tim 3 ] < i S0 (S ) (95 ) ol
k=1 k=1 k=1

k=1

S0 > 7o |zkyk| converges because it is a nonnegative series with bounded sum, and therefore
o0 — . .
> rey TxYk converges in C because C is a Banach space.

And now we must show that (x,y) satisfies the properties of an inner product:
u u u u
(z,y) = Jim ;wkﬂk = lm ;ykik = lim ;yka‘tk = lm ;yki‘k = (y,x

az,y) = lim, ;(awk)yk = aq}ggozwkyk = afz,y)

(x+y,2) = 'ulggo ;(mk + Yi) Zk hm Z TrZk + hm Zykzk )+ (y, 2)

u
z.z) = lim TpTr = lim 2|2 > 0 if x is not the constant zero sequence.
) ETk k q

So (@, y) := > oo, 21Uk defines an inner product on (2. ]

b. (% with this inner product is a Hilbert space.

Proof. Let (s") be a Cauchy sequence in £%) using superscripts to index the outer sequence
and subscripts to index each inner sequence (i.e. s' is the first sequence in (s") and s} is the
second element of the first sequence in (s")).

Let € > 0. Then there exists N € N such that for all n,m > N;n,m € N:

1
! 2
|s" — 5™ = (Z st — 57| ) < g and therefore Z sk — sil? < EZ

Using the fact that each term of a nonnegative series is less than or equal to the sum, we
have |s? — s7'|? < €2/4 and |sf — s7'| < €/2 < e. Thus s is a Cauchy sequence in C, a
complete metric space, and therefore converges to a limit in C.

Using this, define a new sequence s = (si) by:

s 1= lim sy
n—oo



Because (s™) is Cauchy, there exists B € R such that ||s"|, < B for all n € N. Using this
and the fact that the partial sums of a nonnegative series are increasing, we have

u o0
DoIsiP <Y IsilP = ls"ll; < B2 < o0
k=1 k=1

for all n,u € N. Now using the fact that the limit of a convergent bounded sequence in R
must be less than or equal to the upper bound, we take the limit of this as n — oo and find

u u

u
2> lim E s = E | lim s}|* = E e
n—oo n—oo
k=1 k=1

k=1

and then take the limit of that as u — oo, using the fact that a bounded increasing sequence
must converge, which gives

u
P> lim S Il = llsl
> lim 3" [sef? = 5],
k=1

so s € (2,
Similarly, because |s? — si"|* > 0,

u

2
2 €
Z’Sk_sk‘2<2|3k_sk :’|5n_5m”2<z

k=1
for all n,m > N;n,m € N and all u € N, and therefore, now taking the limit as m — oo,

u

€ -
€ >—> lim g st — s7|? = E
4 m—o0o —

u

_ n 2

hm sp — lim sk‘ = g By
k=

m—r0o0

for all n > N;n € N, and then, taking the limit as u — oo,

6
> o> ulgnZ!Sk—Sk\ = 5" — 51

we find that ||s" —s||, < € for all n > N;n € N. Therefore s — s € (* as n — oo and
because (s,) was arbitrary, this means ¢* is complete. We've already shown that ¢ is an
inner product space, so ¢2 is a Hilbert space. O



Lemma 1) Let X be an inner product space over K and (s,) be a Cauchy sequence in X.
Then there exists a real number U > 0 such that ||s,|| < U for all n € N.

Proof. Because (s,) is a Cauchy sequence in X, there exists N € N such that for all n, m >
N;n,m €N ||s,, — s,|| < L.

Let M = max {||s1]|,|[s2]| .- |[sn]; Isn+1]|}, which must exist because it is the maximum
of a finite set of real numbers. We know M > 0 because each norm is nonnegative.

If k<N +1, then [[sg]| < M < M +1,

Ifk>N+1:

skl = llsn1 + (k= sni)ll < llswgall + [Isk — syl < M +1

Let U = M + 1. Then for all k£ € N, ||sx|| < U, as required.
O

A.1.5) Let X be an inner product space over K and (z,), (y,) be Cauchy sequences in X.
Then the sequence ({x,,y,)) converges in K.

Proof. Let € > 0.

Because (x,,) and (y,) are Cauchy sequences in X, by lemma 1 there exist U,V > 0 such
that ||zx|| < U and ||yg|| < V for all k € N.

Let M = max(U,V), and let 6 = min(1,¢/(2M + 1)) > 0. Again because (z,) and (y,)
are Cauchy sequences in X, there exists N € N such that for all n,m > N;n,m € N,
|Zm — xn|| < 0 and ||ym — ynl| < d. Then by the properties of inner products and the
Cauchy-Schwartz inequality, for all n,m > N;n,m € N:

(@ Ym) — Ty Yn)| = [@Tn + (@ — )y Yn + Ym — Yn)) — (T, Yn)|

= (T, Yn) + (T = Ty Un) + (T Y — Yn) + (T — Ty Y — Yn) — (T, Y|
= [T = Tny Yn) + (T Ym = Yn) + (T — Ty Y — Yn)|
< {@m = @y Yn) | + (@0 Y — Yn) | + (T — Ty Y — Y)|
< Nawm = zall 1ynll + 2l lym = yall + 112m = 2all [Ym — ynl
<OM+ M5+ 8 =0602M+9) <6@2M +1) < (2M +1) =

€
2M +1
Thus ((z,, yn)) is a Cauchy sequence in K, a complete metric space, so ({(x,,y,)) converges
in K. [



A.1.6) Let X be an inner product space over K with norm ||-|| induced by the inner product,
and let z,y be points in X, o € K, and (z,,), (y,) be sequences in X and (a,,) a sequence in
K. If z,, = x,y, — vy, and o, — « as n — oo, then (@, Tn, yn) — (ax,y) as n — co.

Proof. Let € > 0, and let x,, — z,y, — v, and a,, = « as n — oo.

Let A = max(|a|, ||z||), and let v = min(1,¢/(2A+ 1)) > 0. Because o, — « and z,, — z as
n — 00, there exists N € N such that for all n > N;n € N: |, — | < v and ||z, — z|| <7,
and therefore:

lom@n — azl] = [[la + (e — a)]fx + (20 — )] — az]],
= |laz + a(z, — x) + (@, — @)z + (v, — @) (2, — ) — x|
— llaf@n — 2) + (@ — )2 + (an — @)z — 2)]
< [la(zn = 2)I[ + l(an = @)z|| + [[(an = a)(zn — 2]
= lal |(zn = 2)[| + lan = al [l2]] + [on = af [[(zn = 2)|

‘ -24+1) =«

A+ A 2 = ~(24 <~H24+1) <
< YA+ Ay + 97 =724+ ) <A +)_2AJr

which shows that «,x, — az as n — oo.

Let M = max(|lax|,|ly]|), and let 6 = min(1,¢/(2M + 1)) > 0. Then there exists N € N
such that for all n > N;n € N: |lay,x, — ax|| < 6 and ||y, — y|| < 6, and therefore:

[(ann, yn) — (e, y)| = [{ox + (nn — @),y + (Yn — y)) — (02, y)]
= [{ax,y) + (apx, — az,y) + {(az,y, — y) + (o, — ax,y, — y) — (o, y)]
= [apx, — ax,y) + (ax, y, — y) + {2y — @z, yn — y)|
< Kanz, — az,y)| + [{ax, Yo — y)| + (onzn — oz, yn — y)|
< llanzn — azl[ yll + ozl [lyn — yll + anzn — az|| [yn — yl|

2 _ < < ‘
< OM + Mo+ 0 5(2M+5)—5(2M+1>_2M—|—1

and thus (a,x,,y,) — (az,y) as n — oo. O

(2M + 1) =€,



A.1.7) Let X be an inner product space, z € X, and (z,) a sequence in X. Then z, — «
as n — oo if and only if ||z, || — ||z|| and (z,,x) — (z,z) as n — oo.

Proof.

= Let x, - x as n — oo. Then ||z, —z| — 0 asn — oo, and by the reverse triangle
inequality,
wnll = ]| < [J#n — 2] = 0 as n — oo,

s0 ||zn|| = ||z|| as n — co. And by the Cauchy-Schwartz inequality,
[Gzn, 2) = (2} | = [[{en — 2, 2) | < llen — 2| [l2] = 0 as n — oo,
S0 (T, ) — (x, ) as n — oo.

< Let ||z, || — ||z| and (z,,2) = (z,z) as n — co. Then (z,, z,) = ||z.||* = ||z||° = (z, z)
and (z,z,) = (z,,x) — (z,x) = (r,z) as n — 0o, and

|z, — xH2 = (z, —,x, — T)

= (X, Tp) — (Tp, ) — (T, 2,) + (x,2)
— (z,x) — (v,2) — (x,z) + (x,x) = 0 as n — o0,

SO X, —> T as n — 00. ]

10



A.1.8) Let X be an inner product space. Let y € X be fixed but arbitrary. Define f, g :
X — C by

fl@)=(y) g(z)={y,2), zeX
Then f and ¢ are Lipschitz continuous with Lipschitz constant ||y||.

Proof. By the Cauchy-Schwartz inequality, for all u,v € X:
1f (u) = f)ll = [Ku, ) = 0, 9| = [{uw = v, )| < |yl [|u = o],

lg(w) = g()ll = Ity w) = (g, )l = Ky, v — ) <yl lu =]l
Thus f and g are Lipschitz continuous with Lipschitz constant [|y||. O

A.1.9) Let M be a complete linear subspace of the inner product space X. Then each vector
u € X has a unique representation © = v +w such that v € M and (w, z) =0 for all z € M.

Proof. Let u € X. Since every linear subspace is a convex set, M is a complete convex set
in X, so by proposition A.9 there exists a unique v € M such that d(u, M) = ||u — v||.

Let w =u —v. Clearly u = v + w.

To show that (w,z) =0 for all z € M, let z € M. If z = 0 then trivially (w, z) = 0.

If 2 # 0, suppose (w,z) # 0 and let v = (v + Y% 2). Then v € M because 22 € K, v # v

1211 [ElS
because % # 0, and
2 2 (w,z> ?
d(u,v)” = llu —v|" = jjlu—(v+ WZ)
2
_ w_<waz> :(w—<w’z>zw—<w’z>z)
2 2 % 2
1] 1] || 2]]
w, 2 (w, z w, z)(w, z
= o) = 2wy - Ly o 2
2
w, z
=l % < fJol* = Ju = o|* = d(u, A

Taking square roots, we find

d(u,v) < d(u, M)
which is a contradiction because v € M, so we've disproven the assumption that (w, z) # 0,
and therefore (w, z) = 0. Because z was arbitrary, (w, z) = 0 for all z € M.
To show uniqueness, let ©w = 04w be another representation such that © € M and (w, z) =0
forall z€ M. Thentv+w=u=v4+w,sow—w=v—0€ Msow—wéeE M, and

(W —w,w —w) = (0,0 —w) — (w,w—w) =0

and therefore @ —w = 0 and @ = w by the contrapositive of property (iv) of inner products.
Then v = u — w = u — w = v, and the representation © = v 4+ w is unique. O
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