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Abstract

In this portfolio project, I will apply the techniques developed by Lawrence Perko
(Perko 2001) and taught in APM 501 at Arizona State University to the Lorenz system,
a famous system of nonlinear ordinary differential equations introduced by Edward N.
Lorenz in 1963, that, for some parameter values, exhibits chaotic behavior, i.e. strong
sensitivity to initial conditions, or as Lorenz described it: ”the present determines the
future, but the approximate present does not approximately determine the future.”

Front view (along x2 axis) Top view (along x3 axis) Side view (along x1 axis)

Figure 1: Three perspectives on a solution of the Lorenz system with σ = 10, r = 28, b = 8/3
starting from (1, 1, 1)T for t from 0 to 100. MATLAB source code is in the appendix.

Introduction

In 1963, Edward M. Lorenz simplified Saltzman’s equations for convection (limited to a
vertical plane) in a fluid of uniform depth, when the temperature difference between the
upper and lower surfaces is held constant, and obtained the following system of nonlinear
ordinary differential equations (Lorenz 1963):

ẋ1 = σ(x2 − x1)
ẋ2 = −x1x3 + rx1 − x2 (1)

ẋ3 = x1x2 − bx3
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In this system, the variables x1, x2, and x3 do not refer to coordinates in space. Instead,
as Lorenz described them, x1 is proportional to the intensity of the convective motion, x2 is
proportional to the temperature difference between the ascending and descending currents,
and x3 is proportional to the distortion of the vertical temperature profile from linearity.

The parameters σ, r, and b are positive constants; σ is the Prandtl number, r is the ratio of
the Rayleigh numbers of the ascending and descending currents, and b is a constant related
to the given space.

These equations also describe the behavior of a waterwheel with leaky cups, a model of the
Lorenz system reportedly invented by Willem Markus and described in detail in chapter 9
of Strogatz 2015. Several people have made YouTube videos showing this model in action.

Simple Properties

Symmetry

The Lorenz equations are symmetric under the transformation (x1, x2, x3) = (−x1,−x2, x3),
so any solution must have a counterpart under the same symmetry, which contributes to the
famous butterfly shape of the Lorenz attractor.

Volume

The divergence of the Lorenz system is

∇ · f =
∂

∂x1
[σ(x2 − x1)] +

∂

∂x2
[−x1x3 + rx1 − x2] +

∂

∂x3
[x1x2 − bx3] = −σ − 1− b < 0

so the Lorenz system contracts volumes in phase space.(Strogatz 2015)

Existence and Uniqueness of Solutions

Following Perko’s notation, we may also write the Lorenz system as

X = (x1, x2, x3)
T ∈ R3 (2)

Ẋ = f(X) =

 σ(x2 − x1)
x1(r − x3)− x2
x1x2 − bx3

 (3)

The function f is differentiable on R3 for all values of σ, r, b ∈ R, and the derivative of f is
the Jacobian matrix:

Df =

 −σ σ 0
r − x3 −1 −x1
x2 x1 −b

 (4)
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which is continuous on R3 for all values of σ, r, b ∈ R, so f ∈ C1(R).

Therefore, by the fundamental-existence and uniqueness theorem, there exists an interval
(−a, a) on which this system has a unique solution. But we don’t have a closed form solution
for X, so we cannot find limt→β− X(t) to determine a maximal interval of existence (α, β).

Instead, we will have to take a different approach, showing that there exists a trapping region
in which all trajectories end, and therefore the right maximal interval of existence of (1) is
[0,∞). To do so, we begin by defining a Lyapunov function for (1).

Trapping Region

Let φt be the flow of the differential equation (1). We define

V (X) = rx21 + σx22 + σ(x3 − 2r)2

Then V ∈ C1(R) and by definition 2 in section 2.9 the derivative of V (X) along the solution
φt(X) is

V̇ (X) = DV (X)f(X)

=
[
2rx1 2σx2 2σx3 − 4σr

]  σ(x2 − x1)
x1(r − x3)− x2
x1x2 − bx3


= 2σrx1(x2 − x1) + 2σx2[x1(r − x3)− x2] + 2σ(x3 − 2r)[x1x2 − bx3]
= 2σ[rx1x2 − rx21 + rx1x2 − x1x2x3 − x22 + x1x2x3 − bx23 − 2rx1x2 + 2brx3]

= −2σ[rx21 + x22 + bx23 − 2brx3]

= −2σ[rx21 + x22 + b(x3 − r)2 − br2].

Since σ > 0, V̇ (X) > 0 only when rx21 + x22 + b(x3 − r)2 − br2 < 0, or equivalently, when

x21
br

+
x22
br2

+
(x3 − r)2

r2
< 1,

which is the equation for an ellipsoid E with center (0, 0, r)T and the positive endpoints of
the principal axes being (

√
br, 0, r), (0,

√
br2, r), and (0, 0, 2r).

On the surface of E, and only on the surface of E, V̇ (X) = 0, so any minima of V must be
found on the surface of E. This includes the global minimum V ((0, 0, 2r)) = 0.

Outside of E, V̇ (X) < 0, so any solution that begins outside the ellipsoid must approach a
minimum, and therefore must approach the ellipsoid.

Inside of E, V̇ (X) > 0, so any solution that begins inside, or at any time enters, the ellipsoid
must approach a minimum on the ellipsoid if time is reversed, and must be repelled from the
ellipsoid as time moves forward, and therefore must remain inside the ellipsoid as t increases.

Therefore all solutions are bounded, and exist for all t > 0.
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Critical Points

The system (2) has critical (or equilibrium) points when f(X) = 0, that is:

σ(x2 − x1) = 0

x1(r − x3)− x2 = 0

x1x2 − bx3 = 0

which implies that x2 = x1 and x3 = 1
b
x21, so

x1(r − x3)− x2 = x1(r −
1

b
x21 − 1) = 0

x1 = 0 or x1 = ±
√
b(r − 1)

giving three critical points (0, 0, 0), (
√
b(r − 1),

√
b(r − 1), r − 1) and

(−
√
b(r − 1),−

√
b(r − 1), r − 1).

The origin is a critical point for all parameter values, and the derivative of f there is

Df(0) =

−σ σ 0
r −1 0
0 0 −b

 (5)

with eigenvalues −b and 1
2

[
−(σ + 1)±

√
σ2 + (4r − 2)σ + 1

]
.

If r < 1 then 4r − 2 < 2 and σ2 + (4r − 2)σ + 1 < (σ + 1)2, so all three eigenvalues have
negative real part and the origin is a sink. In fact, when r < 1 the origin is the only critical
point and it is a globally stable equilibrium point.

When r > 1, a pitchfork bifurcation occurs and two new critical points appear. Lorenz called
these points

C+ = (
√
b(r − 1),

√
b(r − 1), r − 1) and

C− = (−
√
b(r − 1),−

√
b(r − 1), r − 1).

And if r > 1 then σ2 + (4r − 2)σ + 1 > (σ + 1)2, so two eigenvalues of Df(0) have negative
real part and one has positive real part. Therefore the origin becomes a saddle, with a one-
dimensional unstable manifold and a two-dimensional stable manifold. This stable manifold
separates the basins of C+ and C−.(add citation, Global invariant manifolds in the transition
to preturbulence in the Lorenz system)

Following Strogatz 2015 we can also determine the stability of the critical points C+ and C−

under certain conditions.
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The derivative of f at C+ is

Df(C+) =

 −σ σ 0

1 −1 −
√
b(r − 1)√

b(r − 1)
√
b(r − 1) −b

 (6)

The derivative of f at C− is

Df(C+) =

 −σ σ 0

1 −1
√
b(r − 1)

−
√
b(r − 1) −

√
b(r − 1) −b

 (7)

Both have the same characteristic equation:

λ3 + [b+ σ + 1]λ2 + [br + bσ]λ+ 2brσ − 2bσ = 0

This is intractable generally, but when r = rH = σ(σ + b+ 3)/(σ− b− 1) this characteristic
equation becomes

0 = λ3 + [b+ σ + 1]λ2 +

[
b

(
σ
σ + b+ 3

σ − b− 1

)
+ bσ

]
λ+ 2b

(
σ
σ + b+ 3

σ − b− 1

)
σ − 2bσ

= λ3 + [b+ σ + 1]λ2 +

[
σ + b+ 3

σ − b− 1
+ 1

]
bσλ+ 2bσ

[
σ
σ + b+ 3

σ − b− 1
− 1

]
= λ3 + [b+ σ + 1]λ2 +

[
2σ + 2

σ − b− 1

]
bσλ+ 2bσ2

[
σ + b+ 3

σ − b− 1
− 1

σ

]
with the eigenvalues

λ1 = −σ − b− 1, λ2 =

√
2bσ2 + 2bσ√
b+ 1− σ

, λ3 = −
√

2bσ2 + 2bσ√
b+ 1− σ

.

So when r = rH and σ > b + 1, the second and third eigenvalues are purely imaginary, and
a Hopf bifurcation occurs (thus the label rH). When 1 < r < rH , all three eigenvalues are
negative and C+ and C− are stable equilibrium points.

Interestingly, Strogatz claims that when r > rH , C+ and C− are encircled by saddle cycles,
with a two-dimensional stable manifold and a two-dimensional unstable manifold (sic) (Stro-
gatz 2015). Unfortunately I am not yet able to fully understand or evaluate this surprising
claim.
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Visualization

The following plots show how the trajectories from 8 initial values at the corners of a cube
(±1,±1,±1) change as r increases, for t from 0 to 100, with σ = 10 and b = 8/3.

When r < 1, all trajectories approach the origin, the only critical point. When r increases
past 1, two new critical points appear and these trajectories now approach these new critical
points, which are initially stable. As r increases, these critical points move further from the
origin and spiral in more slowly, gradually forming the ”butterfly wings”.

Unfortunately the Hopf bifurcation at r = rH ≈ 24.7 as these critical points become unstable
is not visible. In fact, numerical simulation with MATLAB showed that even when these
points are stable equilibria (r < rH), convergence to these points takes longer and longer as
r approaches rH , and for r near rH convergence does not occur until long after t = 100.

r = 0.5 r = 0.9 r = 1

r = 1.1 r = 2 r = 5

r = 10 r = 20 r = 28

Figure 2: Progression of the Lorenz system as r increases
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Chaotic Behavior

By far the most interesting behavior of the Lorenz system occurs after the Hopf bifurcation,
and although this was not a course in chaos theory, this deserves at least a brief discussion.

In particular, Lorenz studied the parameter values σ = 10, r = 28, b = 8/3 and discov-
ered chaotic behavior, that is, sensitive dependence on initial conditions. Lorenz famously
described this as

Chaos: When the present determines the future, but the approximate present
does not approximately determine the future.

For example, Table 1 shows the evolution of three nearby points under the Lorenz system.
Although the points initially follow similar trajectories, they soon diverge into very different
results.

t x1 x2 x3 x1 x2 x3 x1 x2 x3

0 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 1.0000 1.0000
10 -4.9189 -3.8105 24.6302 -4.9188 -3.8105 24.6301 -4.9188 -3.8105 24.6300
20 0.4654 2.3800 22.0635 0.4662 2.3894 22.0848 0.4674 2.3984 22.1038
30 11.2932 9.9830 32.0380 8.9111 16.5646 12.4624 12.7990 17.6631 26.6436
40 12.8148 6.6362 38.3562 1.4247 0.7080 20.4808 10.5001 1.1823 37.9576
50 1.9468 -2.2861 26.9283 -1.3758 -2.3948 15.8657 7.5134 0.5774 33.2759
60 1.4028 -0.6762 23.4386 2.6514 4.7171 11.5649 -1.0160 2.3426 25.3731
70 7.0489 1.2019 31.9182 -17.0124 -17.4941 38.5163 -1.6267 -1.4362 19.2221
80 1.8661 -1.4101 25.6092 -4.2912 -4.1732 22.3125 4.6893 7.4489 15.6602
90 3.1975 5.1125 20.1064 -6.1280 -11.2512 11.3329 3.3108 5.5928 13.9516
100 6.0875 2.3285 29.0413 8.1564 10.8939 22.3339 -2.2546 -5.6657 25.1917

Table 1: Evolution of the Lorenz system from three close initial values

Lorenz Attractor

Although these values appear random, it’s obvious from plots of the Lorenz system that many
trajectories are eventually confined to a small region of space that resembles a butterfly. This
region is the Lorenz attractor.

An attractor is a subset A of the phase space that is forward invariant under f (if a is an
element of A then so is f(t,a), for all t > 0) and for which there exists a basin of attraction,
B(A), such that for any b ∈ B(A) and any open neighborhood N of A, there is a positive
constant T such that f(t, b) ∈ N for all real t > T .

In fact, for the Lorenz system, almost all trajectories (any trajectory from an initial point not
on the two-dimensional stable manifold of the origin), will approach the Lorenz attractor.
In other words, the basin of attraction of the Lorenz attractor is all of R3 except the two-
dimensional stable manifold at the origin.
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In 1976, John Guckenheimer developed a geometric model with properties similar to the
Lorenz system (Guckenheimer 1976), and in 2002, Warwick Tucker proved that this model
was indeed equivalent to the Lorenz system (Tucker 2002). Among other things this proved
that the Lorenz attractor was a fractal (and therefore a strange attractor).

Summary

To summarize: for any parameters and any initial condition, a solution of the Lorenz system
exists near t = 0 and is bounded as t increases, and therefore exists for all t > 0.

For r < 1, the origin is only equilibrium point and is stable. All trajectories go to the origin
as t→∞.

When r > 1, the origin becomes a saddle with a two-dimensional stable manifold, and two
new equilibrium points appear:

C+ = (
√
b(r − 1),

√
b(r − 1), r − 1) and

C− = (−
√
b(r − 1),−

√
b(r − 1), r − 1).

For r < rH = σ(σ + b+ 3)/(σ − b− 1), these equilibrium points are stable.

For r > rH , and in particular for the parameters Lorenz studied, σ = 10, r = 28, b = 8/3,
trajectories from any initial point outside the two dimensional stable manifold of the origin
approach but never reach the critical points C+ and C−. Some solutions follow chaotic
trajectories near the Lorenz attractor.

This chaotic behavior is the reason the Lorenz system is famous and interesting, but un-
fortunately, this is the subject of another course in chaos theory and could only be briefly
mentioned in this paper. However, the results in this paper are an essential starting point
for studying the chaotic behavior of the Lorenz system.
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Appendix: MATLAB code

To make the plots in Figure 1. Viewing angles were chosen and plots were exported to PNG
files manually.

sigma = 10 ;
b = 8/3 ;
r = 28 ;
f = @( t , x ) . . .

[ . . .
sigma ∗(x(2)−x ( 1 ) ) ; . . .
x ( 1 )∗ ( r − x ( 3 ) ) − x ( 2 ) ; . . .
x (1)∗ x (2 ) − b ∗ x (3 ) . . .

] ;
[ t , x ] = ode45 ( f , [ 0 1 0 0 ] , [ 1 1 1 ] ) ;
plot3 ( x ( : , 1 ) , x ( : , 2 ) , x ( : , 3 ) )

To make the plots in Figure 2, showing the changes in the Lorenz system as r increases from
0.5 to 28, starting from the eight corners of the -1 to +1 cube. Interesting values of r were
chosen and changed in this script, and plots were exported to PNG files manually.

sigma = 10 ;
b = 8/3 ;
r = 28 ;
f = @( t , x ) . . .

[ . . .
sigma ∗(x(2)−x ( 1 ) ) ; . . .
x ( 1 )∗ ( r − x ( 3 ) ) − x ( 2 ) ; . . .
x (1)∗ x (2 ) − b ∗ x (3 ) . . .

] ;
for i = 1 :8

[ t , x ] = ode45 ( f , [ 0 100 ] , . . .
[(−1)ˆ i (−1)ˆ f loor ( i /2) (−1)ˆ f loor ( i / 4 ) ] ) ;

plot3 ( x ( : , 1 ) , x ( : , 2 ) , x ( : , 3 ) )
hold on

end
hold o f f
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To make Table 1.

sigma = 10 ;
b = 8/3 ;
r = 28 ;
f = @( t , x ) . . .

[ . . .
sigma ∗( x(2)−x ( 1 ) ) ; . . .
x ( 1 )∗ ( r − x ( 3 ) ) − x ( 2 ) ; . . .
x (1)∗ x (2 ) − b ∗ x (3 ) . . .

] ;

M1 = zeros (11 , 4 ) ;
M2 = zeros (11 , 4 ) ;
M3 = zeros (11 , 4 ) ;

M1( 1 , 2 : 4 ) = [ 0 . 9 9 9 9 1 1 ] ;
M2( 1 , 2 : 4 ) = [ 1 . 0 0 0 0 1 1 ] ;
M3( 1 , 2 : 4 ) = [ 1 . 0 0 0 1 1 1 ] ;

for i = 1 :10
t = i ∗10 ;
[ t1 , x1 ] = ode45 ( f , [ 0 t ] , M1(1 , 2 : 4 ) ) ;
M1( i +1, 1) = t ;
M1( i +1, 2) = x1 (end , 1 ) ;
M1( i +1, 3) = x1 (end , 2 ) ;
M1( i +1, 4) = x1 (end , 3 ) ;

[ t2 , x2 ] = ode45 ( f , [ 0 t ] , M2(1 , 2 : 4 ) ) ;
M2( i +1, 1) = t ;
M2( i +1, 2) = x2 (end , 1 ) ;
M2( i +1, 3) = x2 (end , 2 ) ;
M2( i +1, 4) = x2 (end , 3 ) ;

[ t3 , x3 ] = ode45 ( f , [ 0 t ] , M3(1 , 2 : 4 ) ) ;
M3( i +1, 1) = t ;
M3( i +1, 2) = x3 (end , 1 ) ;
M3( i +1, 3) = x3 (end , 2 ) ;
M3( i +1, 4) = x3 (end , 3 ) ;

end

for i = 1 :11
fpr intf ( [ ’%d & %0.4 f & %0.4 f & %0.4 f & %0.4 f & %0.4 f & ’ . . .

’ %0.4 f & %0.4 f & %0.4 f & %0.4 f \\\\ \n ’ ] , . . .
M1( i , 1 ) , . . .
M1( i , 2 ) , M1( i , 3 ) , M1( i , 4 ) , . . .
M2( i , 2 ) , M2( i , 3 ) , M2( i , 4 ) , . . .
M3( i , 2 ) , M3( i , 3 ) , M3( i , 4) . . .

)

end

10



References

Guckenheimer, John (1976). “A Strange, Strange Attractor”. In: The Hopf Bifurcation and
Its Applications. Springer, pp. 368–381.

Lorenz, Edward N. (Mar. 1, 1963). “Deterministic Nonperiodic Flow”. In: Journal of the
Atmospheric Sciences 20.2, pp. 130–141. issn: 0022-4928. doi: 10.1175/1520-0469(1963)
020<0130:DNF>2.0.CO;2.

Perko, Lawrence (2001). Differential Equations and Dynamical Systems. 3rd ed. Texts in
Applied Mathematics. New York: Springer-Verlag. isbn: 978-0-387-95116-4. doi: 10.1007/
978-1-4613-0003-8.

Strogatz, Steven H. (Mar. 1, 2015). Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering, Second Edition. 2 edition. Boulder, CO:
Westview Press. 531 pp. isbn: 978-0-8133-4910-7.

Tucker, Warwick (2002). “A Rigorous ODE Solver and Smale’s 14th Problem”. In: Founda-
tions of Computational Mathematics 2.1, pp. 53–117.

11

https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1007/978-1-4613-0003-8
https://doi.org/10.1007/978-1-4613-0003-8

	Blank Page

