
Quantum Computation.
Textbook : Quantum Computation, A Gentle Introduction, by Rieffle and Polak.
Prerequisites:
A course in Linear Algebra is a prerequisite.  A lower division undergraduate physics course that 
covers quantum mechanics would be desirable is not necessary.  

Week 1: 
The nature of reality

• Particles and Waves
• Experiments with light, lasers, flashlights and polarization
• Linear Polarization
• Circular Polarization
• Polarization and vectors

Week 2: (Exercises 2.1, 2.3,2.5, 2.6, 2.8,2.12)
Reality and Math for a Single Particle 

• Complex numbers and complex vectors
• Superposition
• Vectors say something but they say too much
• Greatness is overrated. So is phase.
• Restrictions and quotient spaces
• Spheres are perfect

◦ not the sphere you thought though
◦ cinching the belt much too tightly
◦ the Bloch sphere

• Superposition, again
• Measurements, projections, state collapse and probability
• A Quantum Key exchange

Week 3 (Exercises 3.2, 3.3, 3.8, 3.10, 3.14, 3.15)
Reality and Math for Multiple (Two) Particles 

• New Vector Spaces from Old
• Cartesian products and direct sums
• The tensor product, with too much love.

◦ bilinearity
◦ universality
◦ basis independence
◦ order matters. Here's how (non-commutativity)

• Tensor geometry, demystified more than you'd like
◦ decomposibility and entanglement
◦ bilinearity is not linearity
◦ the decomposable quadric

• Pauli Matricies
• Measurement



Week 4 (Exercises 4.2, 4.5, 4.7, 4.10, 4.16, 4.19, 4.20 plus handout)
Tensor Algebra, as if you hadn't already heard too much. 

• Multilinearity
• Order matters more
• Linear Transformations, in part and in whole
• The tensor product vs any old bilinear map
• Basis free, but factors matter 

Measurement and Computation
• Projections
• Probability
• Mapping unit vectors to probability
• Hermitian operators and measurement

◦ eigenvalues
◦ eigenvectors
◦ orthonormality
◦ what these have to do with projections

Week 5 (Exercises 5.2, 5.5, 5.8, 5.11, 5.12, 5.17)
Exam 1  (Chapters 1-4)
Quantum State Transformations as a Model for Computation

• Unitary Transformations
◦ no cloning, because why would it?

• Quantum Gates
◦ Pauli
◦ Hadamard
◦ Tensor products of single bit operators
◦ Controlled NOT and other controlled gates

• Applications
◦ Dense Coding
◦ Teleportation

• Unitary transformations as circuits.

Week 6 (Exercises 6.2, 6.3, 6.5)
Quantum Computation doing Classical Computations

• Unitarity and reversibility
• Reversibility for classical computations
• Quantum circuits for arithmetic operations

◦ and
◦ addition
◦ modular addition
◦ modular multiplication
◦ modular exponentiation



Week 7-8 (Exercises 7.2, 7.3, 7.5, 7.6, 7.7)
Quantum Algorithms

• Useful things to do with superposition and parallelism
• Complexity of quantum algorithms
• Examples of quantum algorithms
• Quantum subroutines

◦ disentangling qbits
◦ phase change for a subset of basis vectors
◦ state dependent phase shift
◦ state dependent single qbit amplitude shifts

• Classical quantum computations
• Models and Complexity Classes
• Quantum Fourier Transform

Week 9 (Exercises 8.2, 8.3, 8.5, 8.6, 9.2, 9.4, 9.7,9.10)
Shor's Algorithm

• Reduction to finding the period. 
• Factoring 

◦ quantum  core, 
◦ getting the period from the measurement

• Efficiency
• Generalizations

◦ discrete logarithm
◦ hidden subgroups

Grover's Algorithm
• Quantum Search
• Amplitude amplification
• Optimality
• Derandomization

Week 10 (Exercises 10.2, 10.4, 10.6)
Test 2 (State transformation, unitarity, reversibility, quantum arithmetic, quantum complexity, Shor 
and Grover algorithms)

Quantum Subsystems
• Quantum subsystems and mixed states

◦ density operators
◦ the geometry of mixed states
◦ Von Neuman entropy



Week 11 (Exercises 10.10, 10.11, 10.12, 10.13, 10.16, 10.17, 10.24, 10.25)
Quantum Subsystems and Entanglement

• Classifying Entangled states 
◦ bipartite quantum systems
◦ classifying bipartite pure states
◦ quantifying entanglement in bipartite states 

• Density operator formalism of measurement
• Transformations of quantum subsystems and decoherence

◦ superoperators and sum decompositions
◦ relation between state transformations and measurements
◦ decoherence

Quantum Codes
• Examples of quantum error correction

◦ correcting single qbit flips
◦ correcting single qbit phase flips
◦ correcting all single qbit errors

Week 12-13  (Exercises 11.1, 11.2, 11.6, 11.9, 11.11, 11.17, 11.18)
Quantum Error Correction

• Framework for Error Correction
◦ classical error correcting codes
◦ quantum error correcting codes
◦ correctable sets of errors for classical codes vs quantum codes
◦ correcting errors using classical codes vs quantum codes
◦ computing on encoded quantum states
◦ superpositions and mixtures of correctable errors are correctable
◦ classical and quantum independent error models

• CSS Codes
◦ dual classical codes
◦ construction of css codes from classical codes
◦ Steane code

• Stabilizer Codes
◦ binary observables for quantum error correction
◦ Pauli observables
◦ computing on encoded stabilizer states 

• CSS codes as stabilizer codes

Week 14
Review

Final Exam: comprehensive


