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Section 8.3 Summary:

This section of the book focuses on calculating the escape probability (pesc(a, b)) where a and b

are vertices on an electrical networks. Significantly, a parallel is drawn between electric networks

and random walks. There are two methods drawn from physics that can be used to calculate these

escape probabilities. One method is based on simplifying the network and finding the current.

Another method is based on finding the unique harmonic function that represents the voltage of

the electric network.
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Exercise 8.6.
Consider the electrical network with resistance shown in Figure 8.11, and put a battery that es-
tablishes a voltage one at a and zero at b.

1. Find the voltage at vertices c and d.
Proof: To solve for the voltage running through vertex c and d, we first need to simplify the

circuit to obtain the equivalent resistance. With this, we will be able to find the current of the
circuit and thus solve for the voltage at vertex c and d.

Figure 1: Initial and Intermediate circuit

Figure 2: Simplified circuit

As seen in Figure 2, the effective resistance of the circuit is Reff = 16
19 , hence we get i(a) = 19

16 .
With this information and the intermediate circuit, we solve for the voltage and current at each
vertex and resistor as seen in the table below.
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Figure 3: The table shows the resistance, voltage and, current of each vertex and resistor.

2. Deduce the probability that the random walk on this electrical network reaches vertex b
before returning to a when starting from vertex a.

Proof: Recall from part a) we have i(a) = 19
16 , so by Lemma 8.5, we conclude that the

probability that the symmetric random walk starting from a reaches b before returning a is

pesc(a, b) =
ceff (a, b)

c(a)
=

i(a)

c(a)
=

19

16
· 1
2
=

19

32
≈ 0.5938
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Exercise 8.7.
Consider the electrical network obtained from the cube by assigning resistance one to each of the
twelve edges. Let a and b be two vertices at graph distance two from each other and let h be the
unique harmonic function taking the value one at a and zero at b.

1. Use a probabilistic argument to find (without calculation) the value that the function h
takes at each of the vertices x such that d(a, x) = d(b, x).

Argument: When d(a, x) = d(b, x), h(x) = 1
2 . Since our cube is symmetric, when d(a, x) =

d(b, x) we know that for each path from a to x there is a symmetric path from b to x. Then, since
h(a) = 1 and h(b) = 0, and x is a symmetric center between a and b, h(x) = 1

2 .

2. Find more generally the of h at all vertices.
Proof: In the figure below, notice the naming scheme of the vertices di,j for i, j = 1, 2, 3 where

i is the distance from vertex a and, j the distance from vertex b.

Since the voltage function is the unique harmonic function on the network with h(a) = 1 and
h(b) = 0 we can write the following system:

h(d1,1) =
h(a) + h(b) + h(d2,2)

3

h(d2,2) =
h(d1,1) + h(d3,1) + h(d1,3)

3

h(d1,3) =
h(a) + 2h(d2,2)

3

h(d3,1) =
h(b) + 2h(d2,2)

3

With some algebra we arrive with,

h(d2,2) =
1

2
, h(d3,1) =

1

3
h(d1,3) =

2

3
h(d1,1) =

1

2

4



3. Deduce that the probability that the symmetric random walk on the cube starting at vertex
a reaches b before returning to a is equal to 4/9.

Proof: The figures below outline how to solve the circuit for the effective resistance between
vertices a and b. Note all edges of the networks below have a resistance of one unless otherwise
specified.

Figure 4: Cube.

Figure 5: Initial circuit Figure 6: Intermediate circuit

Figure 7: Simplified circuit
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So from the simplified circuit above, we find Reff = 3
4 , therefore we have i(a) = 4

3 , so by
Lemma 8.5, we conclude that the probability that the symmetric random walk starting from a
reaches b before returning a is

pesc(a, b) =
ceff (a, b)

c(a)
=

i(a)

c(a)
=

4

3
· 1
3
=

4

9
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Exercise 8.8.
Let a and b be two adjacent vertices of the electrical network obtained from the cube by assigning
resistance one to each of the twelve edges.

1. Use the two rules shown in Figure 8.4 as in Example 8.1 to find the effective resistance
between a and b.

Proof: The figures below outline how to solve the circuit for the effective resistance between
vertices a and b. Note all edges of the networks below have a resistance of one unless otherwise
specified.

Figure 8: Cube.

Figure 9: Initial circuit Figure 10: Intermediate circuit

Therefore from the simplification of the circuit as seen above, we conclude that the effective
resistance is Reff = 7

12 .
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2. Deduce the probability that the symmetric random walk on the cube starting at vertex a
reaches vertex b before returning to a.

Proof: So from the simplified circuit above in part 1), we found Reff = 7
12 , therefore we have

i(a) = 12
7 , so by Lemma 8.5, we conclude that the probability that the symmetric random walk

starting from a reaches b before returning a is

pesc(a, b) =
ceff (a, b)

c(a)
=

i(a)

c(a)
=

12

7
· 1
3
=

4

7

3. Compare this escape probability with the two analogous escape probabilities obtained in
Example 8.1 and Exercise 8.7.

Proof:

Figure 11: Exercise 8.8 Figure 12: Exercise 8.7 Figure 13: Example 8.1

• In Exercise 8.8 we found an escape probability of pesc(a, b) = 4
7 .

• In Exercise 8.7 we found an escape probability of pesc(a, b) = 4
9 .

• In Example 8.1 we found an escape probability of pesc(a, b) = 4
10 .

Notice that the conductance at a is the same for all three examples. Therefore, the escape proba-
bility for each example scales with the conductance between a and b.
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Exercise 8.9.
For the symmetric random walks on the octahedron, the icosahedron and the dodecahedron shown
in Figure 7.1, compute the probability that the process starting at vertex a reaches vertex b before
returning to a where vertices a and b are any two diametrically opposite vertices.

Octahedron
Proof: Consider the network below notice that the vertices a and b are two diametrically opposite
vertices. Let the each edge of the network have a resistance of one unless otherwise specified.

Figure 14: Octahedron.

Figure 15: Initial circuit
Figure 16: Intermediate cir-
cuit Figure 17: Simplified circuit

So from the simplified circuit in Figure 17, we find Reff = 1
4 + 1

4 = 1
2 , therefore we have

i(a) = 2, so by Lemma 8.5, we conclude that the probability that the symmetric random walk
starting from a reaches b before returning a is

pesc(a, b) =
ceff (a, b)

c(a)
=

i(a)

c(a)
= 2 · 1

4
=

2

4
= 0.5
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Icosahedron
Proof: Consider the network below notice that the vertices a and b are two diametrically opposite
vertices. Let the each edge of the network have a resistance of one unless otherwise specified.

Figure 18: Icosahedron.

Figure 19: Initial circuit
Figure 20: Intermediate circuit

Figure 21: Simplified circuit.

So from the simplified circuit in Figure 21, we find Reff = 1
2 , therefore we have i(a) = 2, so

by Lemma 8.5, we conclude that the probability that the symmetric random walk starting from a
reaches b before returning a is

pesc(a, b) =
ceff (a, b)

c(a)
=

i(a)

c(a)
= 2 · 1

5
=

2

5
= 0.4
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Dodecahedron
Proof: Consider the network below notice that the vertices a and b are two diametrically opposite
vertices. Let the each edge of the network have a resistance of one unless otherwise specified.

Figure 22: Dodecahedron.

Figure 23: Initial circuit Figure 24: Intermediate circuit

Figure 25: Simplified circuit.

So from the simplified circuit in Figure 25, we find Reff = 7
6 , therefore we have i(a) = 6

7 , so
by Lemma 8.5, we conclude that the probability that the symmetric random walk starting from a
reaches b before returning a is

pesc(a, b) =
ceff (a, b)

c(a)
=

i(a)

c(a)
=

6

7
· 1
3
=

6

21
=

2

7
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