

Student: Mason Manning

Course: APM 503

Program: Mathematics MA

Instructor: Horst Thieme

Date: Fall 2019

APM 503 Inner Products

Mason Manning

April 14, 2020

A.1.1

(An inner product is uniquely determined by the norm) Let X be a vector space with inner product $\langle \cdot, \cdot \rangle$ and associated norm $|| \cdot ||$.

(a) Show that $\langle u, v \rangle + \langle v, u \rangle = \frac{1}{2}(||u + v||^2 - ||u - v||^2)$.

Proof:

$$||u+v||^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = ||u||^2 + \langle u, v \rangle + \langle v, u \rangle + ||v||^2$$
$$||u-v||^2 = \langle u-v, u-v \rangle = \langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle = ||u||^2 - \langle u, v \rangle - \langle v, u \rangle + ||v||^2$$

$$||u+v||^2 - ||u-v||^2 = 2\langle u,v \rangle + 2\langle v,u \rangle \implies \langle u,v \rangle + \langle v,u \rangle = \frac{1}{2}(||u+v||^2 - ||u-v||^2)$$

(b) Show that in a real inner product space $\langle u, v \rangle = \frac{1}{4}(||u+v||^2 - ||u-v||^2)$.

Proof:

$$\begin{aligned} ||u+v||^2 &= \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = ||u||^2 + \langle u, v \rangle + \langle u, v \rangle + ||v||^2 \\ &= ||u||^2 + 2\langle u, v \rangle + ||v||^2 \\ ||u-v||^2 &= \langle u-v, u-v \rangle = \langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle = ||u||^2 - \langle u, v \rangle - \langle u, v \rangle + ||v||^2 \\ &= ||u||^2 - 2\langle u, v \rangle + ||v||^2 \end{aligned}$$

$$||u+v||^2 - ||u-v||^2 = 4\langle u,v\rangle \implies \langle u,v\rangle = \frac{1}{4}(||u+v||^2 - ||u-v||^2)$$

(c) Show that, if X is a complex inner product space,

$$\langle u, v \rangle - \langle v, u \rangle = \frac{i}{2}(||u + iv||^2 - ||u - iv||^2)$$

and

$$\langle u, v \rangle = \frac{1}{4}(||u + v||^2 - ||u - v||^2 + i||u + iv||^2 - i||u - iv||^2).$$

Proof:

(i)

$$\begin{aligned} ||u+iv||^2 &= ||u||^2 + \langle u,iv\rangle + \langle iv,u\rangle + ||iv||^2 \\ ||u-iv||^2 &= ||u||^2 - \langle u,iv\rangle - \langle iv,u\rangle + ||iv||^2 \end{aligned}$$

$$\begin{split} ||u+iv||^2 - ||u-iv||^2 &= 2\langle u,vi\rangle + 2\langle vi,u\rangle = -2i\langle u,v\rangle + 2i\langle v,u\rangle \\ &\text{Hence } \langle u,v\rangle - \langle v,u\rangle = \frac{i}{2}(||u+iv||^2 - ||u-iv||^2) \end{split}$$

(ii)
$$||u+v||^2 = ||u||^2 + \langle u, v \rangle + \langle v, u \rangle + ||v||^2$$

$$||u-v||^2 = ||u||^2 - \langle u, v \rangle - \langle v, u \rangle + ||v||^2$$

$$||u+iv||^2 = ||u||^2 + \langle u, iv \rangle + \langle iv, u \rangle + ||iv||^2$$

$$||u-iv||^2 = ||u||^2 - \langle u, iv \rangle - \langle iv, u \rangle + ||iv||^2$$

$$\begin{split} ||u+v||^2 - ||u-v||^2 &= 2\langle u,v\rangle + 2\langle v,u\rangle \\ i||u+iv||^2 - i||u-iv||^2 &= 2i\langle u,vi\rangle + 2i\langle vi,u\rangle = 2\langle ui,vi\rangle - 2\langle v,u\rangle = 2\langle u,v\rangle - 2\langle v,u\rangle \\ ||u+v||^2 - ||u-v||^2 + i||u+iv||^2 - i||u-iv||^2 &= 4\langle u,v\rangle \\ \\ \text{Hence } \langle u,v\rangle &= \frac{1}{4}(||u+v||^2 - ||u-v||^2 + i||u+iv||^2 - i||u-iv||^2) \end{split}$$

A.1.2

A real $n \times n$ matrix $A = (\alpha_{ij})$ iw called symmetric if $\alpha_{ij} = \alpha_{ji}$ for all i, j = 1, ..., n.

(a) Show that a real $n \times n$ matrix A is symmetric if and only if $x \cdot (Ay) = (Ax) \cdot y$ for all $x, y \in \Re^n$.

Here \cdot denotes the Euclidean inner product on \Re^n .

Proof:

 (\Longrightarrow) : Let A be an $n \times n$ matrix that is symmetric. Then $x \cdot (Ay) = \sum_{i=1}^n [x_i(\sum_{j=1}^n \alpha_{ij}y_j)] = \sum_{i=1}^n \sum_{j=1}^n x_i \alpha_{ij} y_j$ so $(Ax) \cdot y = x \cdot (Ay)$.

 (\Leftarrow) : Let $x \cdot (Ay) = (Ax) \cdot y$ for $x, y \in \mathbb{R}^n$, define $v^k \in \mathbb{R}^n$ with $v^k_{i \neq k} = 0$ and $v^k_{i = k} = 1$. Now let $i, j \in \{1, 2, ..., n\}$ then $v^i \cdot (Ae^j) = \alpha_{ij}$ and $(v^i A) \cdot v^j = \alpha_{ji}$ by assumption $e^i \cdot (Ae^j) = (Ae^i) \cdot e^j$ so $\alpha_{ij} = \alpha_{ji}$ so A is symmetric.

A symmetric matrix A is called positive definite if $x \cdot (Ax) > 0$ for all $x \in \Re^n$, $x \neq 0$.

(b) Show: A function \langle , \rangle from $\Re^n \times \Re^n$ into \Re is an inner product on \Re^n if and only if there exists a positive definite symmetric matrix A such that $\langle x,y\rangle=x\cdot (Ay)$ for all $x,y\in \Re^n$.

Proof:

 $(\Longrightarrow): \text{Suppose } \langle,\rangle \text{ from } \Re^n \times \Re^n \text{ to } \Re \text{ is an inner product space. Define } v^k \in \Re^n \text{ with } v^k_{i\neq k} = 0 \text{ and } v^k_{i=k} = 1. \text{ Let } A = (\alpha_{ij}) \text{ be a real } n \times n \text{ matrix with } \alpha_{ij} = \langle v^i, v^j \rangle. \text{ Since } \mathbf{K} = \Re, \\ \alpha_{ij} = \langle v^i, v^j \rangle = \langle v^j, v^i \rangle = \alpha_{ji}, \text{ so } A \text{ is symmetric. Let } x, y \in \Re^n \text{ notice that } x = \sum_{i=1}^n x_i v^i \\ \text{and } y = \sum_{i=1}^n y_i v^i. \text{ So } \langle x, y \rangle = \langle \sum_{i=1}^n x_i v^i, y \rangle = \sum_{i=1}^n x_i \langle v^i, y \rangle = \sum_{i=1}^n x_i \langle v^i, \sum_{j=1}^n y_j v^j \rangle = \\ \sum_{i=1}^n \sum_{j=1}^n x_i y_j \langle v^i, v^j \rangle = \sum_{i=1}^n \sum_{j=1}^n x_i y_j \alpha_{ij} = x \cdot (Ay). \text{ Now } x \cdot (Ax) = \langle x, x \rangle > 0 \text{ for all } x \in \Re^n, \\ x \neq 0, \text{ so } A \text{ is positive definite.}$

(\Leftarrow): Let A be a positive definite symmetric $n \times n$ matrix with $\langle x, y \rangle = x \cdot (Ay)$ for all $x, y \in \Re^n$. Then for $u, v \in \Re^n$, $\alpha \in \mathbf{K}$, $\langle u, v \rangle = u \cdot (Av) = (Au) \cdot v = v \cdot (Au) = \langle v, u \rangle$

$$\langle \alpha u, v \rangle = \alpha u \cdot (Av) = \alpha (u \cdot (Av)) = \alpha \langle u, v \rangle$$

$$\langle u + v, w \rangle = (u + v) \cdot (Aw) = (u \cdot Aw) + (v \cdot Aw) = \langle u, w \rangle + \langle v, w \rangle$$

 $\langle u, u \rangle = u \cdot (Au) > 0$ for $u \neq 0$ by positive definite.

A.1.3

Let A be a positive definite symmetric $n \times n$ matrix and \cdot denote the inner product on \Re^n . Show: $|x \cdot (Ay)|^2 \leq [x \cdot (Ax)][y \cdot (Ay)]$ for all $x, y \in \Re^n$ with equality holding if and only if x and y are linearly dependent.

Proof:

Recall by Exercise A.1.2 b) $x \cdot (Ay) = \langle x, y \rangle$

Now by Theorem A.2 and $|x \cdot (Ay)|^2 = |\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle = [x \cdot (Ax)][y \cdot (Ay)]$ and also by Theorem A.2 the equality holds for iff x, y are linearly dependent.

A.1.4

Consider $\ell^2 = \{x = (x_n) \in \mathbf{C}^{\mathbf{N}}; ||x||_2^2 < \infty\}$ where

$$||x||_2^2 = \sum_{n=1}^{\infty} |x_n|^2.$$

Show:

(a) For each $x = (x_n)$ and $y = (y_n)$ in ℓ^2 , the series

$$\sum_{k=1}^{\infty} x_k \overline{y_k} =: \langle x, y \rangle$$

converges in C (with absolute value) and defines an inner product on ℓ^2 .

Proof:

Note that $y=(y_n)\in \ell^2 \implies z=(z_k)=(\overline{y_n})\in \ell^2$. Note $|y|,|z|\in \Re^{\mathbf{N}}$ so for all $m\in \mathbf{N}$,

$$\left|\sum_{k=1}^{m} x_k \overline{y_k}\right| \leq \sum_{k=1}^{m} |x_k z_k| = \sum_{k=1}^{m} |x_k| |z_k| \leq \left(\sum_{k=1}^{m} |x_k|^2\right)^{1/2} \cdot \left(\sum_{k=1}^{m} |z_k|^2\right)^{1/2} \leq \left(\sum_{k=1}^{\infty} |x_k|^2\right)^{1/2} \cdot \left(\sum_{k=1}^{\infty} |z_k|^2\right)^{1/2}$$

2

$$=(||x_k||_2^2)^{1/2}\cdot(||z_k||_2^2)^{1/2}<\infty$$
 by Cauchy-Schwarz in \Re^n

so the series converges. Now, let $x, y, z \in \ell^2$, $\alpha \in \mathbb{C}$. Then

(i)

$$\overline{\langle x, y \rangle} = \overline{\sum_{k=1}^{\infty} x_k \overline{y_k}} = \overline{\lim_{n \to \infty} \sum_{k=1}^{n} x_k \overline{y_k}} = \lim_{n \to \infty} \overline{\sum_{k=1}^{n} Re(x_k \overline{y_k}) + i \cdot Img(x_k \overline{y_k})}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} Re(x_k \overline{y_k}) - i \cdot Img(x_k \overline{y_k}) = \lim_{n \to \infty} \sum_{k=1}^{n} \overline{x_k \overline{y_k}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} y_k \overline{x_k} = \sum_{k=1}^{\infty} y_k \overline{x_k} = \langle y, x \rangle$$

(ii)
$$\langle \alpha x, y \rangle = \sum_{k=1}^{\infty} \alpha x_k \overline{y_k} = \alpha \sum_{k=1}^{\infty} x_k \overline{y_k} = \alpha \langle x, y \rangle$$

(iii)
$$\langle x+y,z\rangle = \sum_{k=1}^{\infty} (x_k+y_k)\overline{z_k} = \sum_{k=1}^{\infty} x_k \overline{z_k} + \sum_{k=1}^{\infty} y_k \overline{z_k} = \langle x,z\rangle + \langle y,z\rangle$$

(iv)
$$\langle x,x\rangle = \sum_{k=1}^{\infty} x_k \overline{x_k} = \sum_{k=1}^{\infty} |x_k|^2 > 0 \text{ for } x \neq \mathbf{O}$$

(b) ℓ^2 with this product is a Hilbert space.

Hint: Modify the proof of Theorem 2.26.

Proof:

Let $(x^n)_{n\in\mathbb{N}}\subset \ell^2$ be a Cauchy sequence, let $x^n=(x^n_j)_{j\in\mathbb{N}}=(x^n_1,x^n_2,...)\in \ell^2$, then for $x=(x_j)_{j\in\mathbb{N}}, y=(y_j)_{j\in\mathbb{N}}\in \ell^2$, $||x-y||_2=(\sum_{j=1}^\infty |x_j-y_j|^2)^{1/2}$. Now consider $\epsilon>0$, then there exits $N\in\mathbb{N}$, such that if m,n>N then $||x^m-x^n||_2<\epsilon$. Thus for all $j\in\mathbb{N}$,

$$|x_j^m - x_j^n|^2 \le \sum_{j=1}^{\infty} |x_j^m - x_j^n|^2 = ||x^m - x^n||_2^2 < \epsilon^2$$

Then since the sequence $(x_j^n)_{j\in\mathbb{N}}\subset\mathbb{C}$ is Cauchy, and \mathbb{C} is complete, for all $j\in\mathbb{N}$ there exists a $x_j\in\mathbb{C}$ such that $\lim_{n\to\infty}x_j^n=x_j$. Now consider an arbitrary but fixed $k\in\mathbb{N}$, then if m,n>N

$$\sum_{i=1}^{k} |x_k^m - x_j^n|^2 \le \sum_{i=1}^{\infty} |x_j^m - x_j^n|^2 = ||x^m - x^n||_2^2 < \epsilon^2$$
 (1)

Hence for $n \to \infty$ and n > M $\sum_{j=1}^{k} |x_j^m - x_j|^2 < \epsilon^2$

$$(\sum_{j=1}^{k}|x_{j}|^{2})^{1/2} \leq (\sum_{j=1}^{k}|x_{j}^{m}-x_{j}|^{2})^{1/2} + (\sum_{j=1}^{k}|x_{j}^{m}|^{2})^{1/2} < \epsilon + (\sum_{j=1}^{k}|x_{j}^{m}|), \text{ (Property of Euclidean norm)}$$

Then for $k \to \infty$, $||x||_2 \le \epsilon + ||x^m||_2$ hence $x = (x_j)_{j \in \mathbb{N}} \in \ell^2$ also, for $k \to \infty$ and m > N, $||x^m - x||_2^2 = \sum_{j=1}^\infty |x_j^m - x_j|^2 < \epsilon^2$ implying $\lim_{m \to \infty} ||x^m - x||_2 = 0$. Therefore $(x^m)_{m=1}^\infty \subset \ell^p$, is a convergent sequence that converges to $x \in \ell^2$. We conclude then that ℓ^2 is a complete metric space and an inner product space hence a Hilbert space.

A.1.5

Let X be an inner product space over **K** and $(x_n), (y_n)$ be Cauchy sequences in X. Show: The sequence $(\langle x_n, y_n \rangle)$ converges in **K**.

Proof: Since $(x_n), (y_n)$ are Cauchy sequences over a metric space they are bounded, so there exists $M \in \mathbf{K}$ such that $||x_n||, ||y_n|| < M$ for $n \in \mathbf{N}$. Since $(x_n), (y_n)$ are Cauchy, there exists $N \in \mathbf{N}$ such that $||x_m - x_n|| < \frac{\epsilon}{2}$ and $||y_m - y_n|| < \frac{\epsilon}{2}$ for n > N. Then, using the Cauchy-Schwarz inequality

$$\begin{split} |\langle x_n, y_n \rangle - \langle x_m, y_m \rangle| &= |\langle x_n, y_n \rangle - \langle x_m, y_n \rangle + \langle x_m, y_n \rangle - \langle x_m, y_m \rangle| \\ &= |\langle x_n - x_m, y_n \rangle + \langle x_m, y_n - y_m \rangle| \\ &\leq ||x_n - x_m|| \cdot ||y_n|| + ||x_m|| \cdot ||y_n - y_m|| \\ &\leq ||x_n - x_m||M + M||y_n - y_m|| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{split}$$

So $(\langle x_n, y_n \rangle)$ is a Cauchy sequence in **K** and therefore a convergent sequence in **K**.

A.1.6

Let X be an inner product space and x, y be points in X, $\alpha \in \mathbf{K}$, and $(x_n), (y_n)$ be sequences in X and (α_n) a sequence in \mathbf{K} .

Show: If $x_n \to x$, $y_n \to y$ and $\alpha_n \to \alpha$ as $n \to \infty$, then $\langle \alpha_n x_n, y_n \rangle \to \langle \alpha x, y \rangle$ as $n \to \infty$.

Proof:

Let $\epsilon > 0$, then since (y_n) converges, there is $N \in \mathbf{N}$ such that $||y_n - y|| < \min\{\frac{\epsilon}{2}, \frac{\epsilon}{2||x||+1}\}$ for $n \geq N$, notice that $||y_n|| < ||y|| + \epsilon$ for $n \geq N$. Now, since (x_n) converges, there is $M \in \mathbf{N}$ with M > N and $||x_n - x|| < \frac{\epsilon}{2(||y||+\epsilon)}$. Consider the sequence $\langle x_n, y_n \rangle$

$$\begin{split} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n - x, y_n \rangle + \langle x, y_n \rangle - \langle x, y \rangle| \\ &= |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle| \\ &\leq |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle| \\ &\leq ||x_n - x|| \cdot ||y_n|| + ||x|| \cdot ||y_n - y|| \\ &\leq ||x_n - x|| \cdot ||y + \epsilon|| + ||x|| \cdot ||y_n - y|| \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \text{ for } n \geq M \end{split}$$

So $\langle x_n, y_n \rangle \to \langle x, y \rangle$. Then since $\alpha_n \to \alpha$, $\langle \alpha_n x_n, y_n \rangle = \alpha_n \langle x_n, y_n \rangle \to \alpha \langle x, y \rangle = \langle \alpha x, y \rangle$, as $n \to \infty$.

A.1.7

Let X be an inner product space, $x \in X$ and (x_n) a sequence in X. Show: $x_n \to x$ as $n \to \infty$ if and only if $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$ as $n \to \infty$.

Proof:

$$(\Longrightarrow): \text{Consider the sequence } (x_n) \text{ in } X \text{ let } x \in X \text{ such that } x_n \to x \text{ then } 0 \leq |||x_n|| - ||x||| \leq ||x_n - x|| \to 0 \text{ hence } ||x_n|| \to ||x|| \text{ now let } \epsilon > 0 \text{ with } ||x_n - x|| < \frac{\epsilon}{||x||}, 0 \leq |\langle x_n, x \rangle - \langle x, x \rangle| = |\langle x_n - x, x \rangle| \leq ||x_n - x|| ||x|| < \frac{\epsilon}{||x||} ||x|| = \epsilon. \text{ Hence } \langle x_n, x \rangle \to \langle x, x \rangle.$$

$$(\Longleftrightarrow) : \text{Consider the sequence } (x_n) \text{ in } X \text{ let } x \in X \text{ such that } ||x_n|| \to ||x|| \text{ as } n \to \infty \text{ and } \langle x_n, x \rangle \to \langle x, x \rangle, \text{ then } ||x_n - x||^2 = \langle x_n - x, x_n - x \rangle = \langle x_n, x_n \rangle - \langle x_n, x \rangle - \langle x, x_n \rangle + \langle x, x \rangle = ||x_n||^2 + ||x||^2 - \langle x_n, x \rangle - \langle x, x_n \rangle \to ||x_n||^2 + ||x||^2 - \langle x, x \rangle - \langle x, x \rangle = 0$$
Hence $x_n \to x$ as $n \to \infty$.

Let X be an inner produce space. Let $y \in X$ be fixed but arbitrary. Define $f, g: X \to \mathbf{C}$ by

$$f(x) = \langle x, y \rangle, \quad g(x) = \langle y, x \rangle, \quad x \in X$$

Then f and g are Lipschitz continuous with Lipschitz constant ||y||.

Proof:

Let $x, y, z \in X$,

$$d(f(x), f(z)) = |\langle x, y \rangle - \langle z, y \rangle| = |\langle x - z, y \rangle| \le ||x - z|| \cdot ||y|| = ||y||d(x, z)$$
$$d(g(x), g(z)) = |\langle y, x \rangle - \langle y, z \rangle| = |\langle y, x - z \rangle| \le ||y|| \cdot ||x - z|| = ||y||d(x, z)$$

Notice $||\langle x-z,y\rangle|| \leq ||x-z|| \cdot ||y||$ is true by the Cauchy-Schwarz inequality. Hence f,g are Lipschitz continuous and ||y|| is an upper bound on the Lipschitz constant. Now, observe that this upper bound is achieved: For $y \neq 0$,

$$\frac{d(f(y), f(0))}{d(y, 0)} = \frac{|\langle y, y \rangle - \langle 0, y \rangle|}{||y||} = \frac{|\langle y, y \rangle|}{||y||} = \frac{||y||^2}{||y||} = ||y||$$

$$\frac{d(g(y), g(0))}{d(y, 0)} = \frac{|\langle y, y \rangle - \langle y, 0 \rangle|}{||y||} = \frac{|\langle y, y \rangle|}{||y||} = \frac{||y||^2}{||y||} = ||y||$$

If y = 0 then $d(y, 0) = d(0, 0) = 0 = ||y|| \cdot 0 = ||y||d(f(0), f(0)) = ||y||d(f(y), f(0))$. So the Lipschitz constant for f and g is ||y||.

1 A.1.9

Let M be a complete linear subspace of the inner product space X.

Show: Each vector $u \in X$ has a unique representation u = v + w such that $v \in M$ and $\langle w, z \rangle = 0$ for all $z \in M$.

Remark: The vector $v \in M$ is called the *orthogonal projection* of u on M and is also characterized as the unique vector in M such that d(u, M) = ||u - v|| which exists according to Proposition A.9

Hint: set w = u - v. Let $z \in M$. Observe that the function $\phi(\alpha) = ||w - \alpha z||^2$, $\alpha \in \mathbf{K}$, has a minimum at $\alpha = 0$.

Proof: Let $u \in X$. Since M is a linear subspace of X it is convex, so there is a unique $v \in M$ such that d(u, M) = ||u - v||. Set w = u - v and let $z \in M$. Consider the function $\phi(\alpha) = ||w - \alpha z||^2$, $\alpha \in \mathbf{K}$. Notice that $\phi(\alpha) = ||u - (v + \alpha z)||^2$ and that $(v + \alpha z) \in M$ so $\phi(\alpha)$ is minimized when $\alpha = 0$, since this is an extremum, $\phi_{\alpha}(0) = 0$. Consider $\alpha \in \mathbf{K}$ then,

$$\phi(\alpha) = ||w - \alpha z||^{2}$$

$$= \langle w - \alpha z, w - \alpha z \rangle$$

$$= ||w||^{2} - \bar{\alpha} \langle w, z \rangle - \alpha \langle z, w \rangle + |\alpha|^{2} ||z||^{2}$$

$$= ||w||^{2} + |\alpha|^{2} ||z||^{2} - \alpha (\langle w, z \rangle + \langle z, w \rangle)$$

$$\implies \phi_{\alpha}(\alpha) = 2|\alpha|||z||^{2} - (\langle w, z \rangle + \langle z, w \rangle)$$

$$\implies \phi_{\alpha}(0) = -(\langle w, z \rangle + \langle z, w \rangle) = 0 \implies \Re(\langle w, z \rangle) = 0$$

Similarly we have for $\alpha \in \Re$,

$$\phi(\alpha i) = ||w - \alpha z i||^{2}$$

$$= \langle w - \alpha z i, w - \alpha z i \rangle$$

$$= ||w||^{2} + \alpha i \langle w, z \rangle - \alpha i \langle z, w \rangle + |\alpha|^{2} ||z||^{2}$$

$$= ||w||^{2} + |\alpha|^{2} ||z||^{2} + \alpha i (\langle w, z \rangle - \langle z, w \rangle)$$

$$= ||w||^{2} + |\alpha|^{2} ||z||^{2} - 2\alpha \Im(\langle w, z \rangle)$$

$$\implies \phi_{\alpha}(\alpha i) = 2|\alpha|||z||^{2} - 2\Im(\langle w, z \rangle)$$

$$\implies \phi_{\alpha}(0 i) = -2\Im(\langle w, z \rangle) = 0 \implies \Im(\langle w, z \rangle) = 0$$

Therefore we conclude that $\langle w, z \rangle = \Re(\langle w, z \rangle) + i\Im(\langle w, z \rangle) = 0 + 0i = 0.$

Uniqueness: Let $v,x\in M$ then consider u=v+w and u=x+y therefore $\langle w,z\rangle=0=\langle y,z\rangle$ for all $z\in M$ then consider $z\neq \mathbf{0}$ then if $\langle w,z\rangle=0=\langle y,z\rangle$ hence $\langle w,z\rangle-\langle y,z\rangle=\langle w-y,z\rangle=0$ therefore by Cauchy-Schwarz, $\langle w-y,z\rangle=||w-y||\cdot||z||=0$ so |w-y|=0 since $z\neq \mathbf{0}$ which implies w=y. Thus v=x because $u=v+w=x+y\implies v+w=x+w$ since y=w. So v-x=y-w. Notice that $v-x\in M$ and $\langle y-w,z\rangle=0$ for all $z\in M$. In particular $0=\langle y-w,v-x\rangle=\langle y-w,y-w\rangle$. By the properties of the inner product, 0=y-w=v-x.