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A.1l.1

(An inner product is uniquely determined by the norm) Let X be a vector space with inner product
(+,-) and associated norm || - ||.

() Show that (u,v) + (v,u) = 3(|[u+ || — [lu — o] 2).

Proof:

llw+0l* = (u+v,u+v) = (u,u) + (u,0) + (0, u) + (v,0) = [[ull® + (u,0) + (v,0) + [o]

[l = vl = (u—v,u =) = (u,u) = (u,v) = (v, u) + (v,0) = |[ul]® = (u,0) — (v,0) + [v]

1
[l ol = flu = l[* = 2(u,v) +2(v,u) = (w,0) + (v,u) = S([Ju+v[]* = [fu—v[*)
(b) Show that in a real inner product space (u,v) = 1(|u+ v[|? — [Ju — v||?).
Proof:
[+ 0l = (u+v,u+v) = (u,u) + (u,0) + (v, u) + (v,0) = [[ull® + (u,0) + (u,0) + [o]
= [lull* + 2(u, v) + ||v]|*
[l = ol|* = (u = v,u = v) = (u,u) = {u,v) = (v, u) + (v,0) = ||ul|* ~ (u,v) = (u,0) + [Jv]

= [Jull* = 2(u, v) + [Jv]|*

1
[+ ol = fJu = v||* = 4(u,v) = (u,v) = Z(lu+o][* = [ju—vl[*)

(c) Show that, if X is a complex inner product space,

(u,v) = (v, u) = 5 (|Ju+iv]|* — [Ju—iv[*)

and 1
(u,v) = (lu+ [ = [l = ol[* + il Ju + iv||* = ilfu = iv][?).

Proof:
@ 2 2 2

[+ iv[|” = [[ul]* + (u, iv) + (v, u) + [|iv]]

llu = iv|* = JJul[*  (u, iv) — (iv,u) + [Jiv]|?
[u+v||? — ||Ju —v]||* = 2{u, vi) + 2(vi,u) = —2i(u,v) + 2i{v,u)

Hence {(u,v) — {(v,u) = %(Hu—FwHQ — ||u — iv||?)

(ii)
[+ 0* = [Jull* + {u, v) + (v, u) + ||l
_<u

(
[l = * = [[ull* = (u, v) = (v,u) + ||v]|?
[l + il |* = [Jul|* + (u, iv) + (v, u) + ||iv]|?
[l — vl |* = [Jul|* = (u, iv) = (v, u) + |liv]|?

llw+0l? = [Ju — o[> = 2{u, v) +2(v, )
i|Ju + iv|]? —il|u — v||* = 2i{u, vi) + 2i{vi,u) = 2(ui,vi) — 2(v,u) = 2{u,v) — 2(v, u)

[l + ol = |l = ol* + il |u + iv]|* — ilJu — | |* = 4{u, v)

1 . . )
Hence (u,v) = 4 (|lu+vl[* = [Ju = vl[* + dllu+ iv][* — il ju — iv[*)



A.1.2

A real n x n matrix A = (oy;) iw called symmetric if a;; = aj; for all 4, j =1,...,n.

(a) Show that a real n x n matrix A is symmetric if and only if = - (Ay) = (Ax) - y for all
x,y € R™.

Here - denotes the Euclidean inner product on R"™.

Proof:

(=) : Let A be an n x n matrix that is symmetric. Then x - (Ay) = >3i_, [#:(3°]_; cijyy)] =
D ?:1 zi0;y; so (Ax) -y = x - (Ay).

(<=) : Let 2 - (Ay) = (Ax) -y for 2,y € R, define v* € R with vf?ék =0 and v}, = 1. Now
let 4,7 € {1,2,...,n} then v’ - (4e/) = a;;j and (v'A) - v/ = aj; by assumption e’ - (Ae?) = (Ae?) - e’
so ayj = aj; 50 A is symmetric.

A symmetric matrix A is called positive definite if z - (Az) > 0 for all z € R™, x # 0.

(b) Show: A function (,) from R™ x R™ into R is an inner product on R if and only if there exists
a positive definite symmetric matrix A such that (z,y) = = - (Ay) for all x,y € R™.

Proof:

(=) : Suppose (,) from R" x R" to R is an inner product space. Define v* € R" with
vf, = 0and v, = 1. Let A = (a;;) be a real n x n matrix with a;; = (v*,07). Since K = R,
;= (vhol) = (v, 0") = ayi, so A is symmetric. Let z,y € R" notice that z = Y I, z;0°
and y = Z?:l yiv'. So (z,y) = <Z?:1 zv'y) = Z?:l T (v',y) = Z?:l fcz‘@l»Z?:l yv’) =
S Z?:l Ty (v, 07y =30 Z?:l ziyja; = x - (Ay). Now z - (Az) = (z,z) > 0 for all x € R”,
x # 0, so A is positive definite.

(<=): Let A be a positive definite symmetric n x n matrix with (z,y) = 2 - (Ay) for all

z,y € R". Then for u,v € R", a € K, (u,v) =u- (Av) = (Au) - v =v- (Au) = (v, u)
(au,v) = au - (Av) = a(u - (Av)) = a(u,v)

(u+v,w) =(u+v) (Aw) = (u- Aw) + (v - Aw) = (u, w) + (v, w)
(u,u) = u- (Au) > 0 for u # 0 by positive definite.

A.1.3

Let A be a positive definite symmetric n X n matrix and - denote the inner product on ™. Show:
|z - (Ay)|? < [z - (Az)][y - (Ay)] for all z,y € R™ with equality holding if and only if z and y are
linearly dependent.

Proof:

Recall by Exercise A.1.2 b) z - (Ay) = (z,y)

Now by Theorem A.2 and |z - (Ay)|? = [(z,y)|? < (z,2)(y,y) = [ - (Az)][y - (Ay)] and also by
Theorem A.2 the equality holds for iff x, y are linearly dependent.

A.l4

Consider (2 = {z = (z,) € CN;||z||3 < oo} where

oo

5 =D lzal®.

n=1

Show:
(a) For each z = (x,,) and y = (y,,) in €2, the series

(oo}
> @k = (z,y)
k=1

converges in C (with absolute value) and defines an inner product on £2.
Proof:
Note that y = (y,) € (> = z = (21,) = (Un) € 2. Note |y, |z| € RN so for all m € N,

izl < Q7 )2 Q122 < Qo lanl)2 - O la)Y?
1 k=1 k=1 k=1 k=1

m

m m
|Z$k27k| < Z |zkzr| =
k=1 k

k=1



= (||z1]|$)*? - (||2&]12)*/? < 0o by Cauchy-Schwarz in R"

so the series converges. Now, let .,z € £?, o € C. Then

(i)

(,y) = Zlfkyk = lim Zxkyk = lim ZRe 1Y) + i - Img(xi k)

k=1
= lim ; Re(zxgy) — i - Img(xxgy) = lim kz_:xk:Tk
n oo
= nh_)ngo;ykﬁ = ;ykﬁ = (y, )
(ii)
(az,y) Zaxkyk = azxkyk = a(z,y)
(iii)
o0 o0 o0
@+y,2) = (2 +yp)Z = Y Tk + Y UkZe = (2,2) + (y,2)
k=1 k=1 k=1

(iv)
Zxkxk = Z lzg|? > 0 for x # O

k=1

(b) £? with this product is a Hilbert space.

Hint: Modify the proof of Theorem 2.26.

Proof:

Let (2")nen C €% be a Cauchy sequence, let 2" = (27)jen = (2}, 2%,...) € (2, then for
r = (75)jen, ¥ = (Yj)jen € O, ||z —ylla = (3072, 75 — y;1?)/2. Now consider ¢ > 0, then there
exits N € N, such that if m,n > N then ||z — z"||2 < €. Thus for all j € N,

oo
o —ap? < Y — 2 = e - < &

Then since the sequence (:17?) jen C C is Cauchy, and C is complete, for all j € N there exists a
z; € C such that lim, .z} = x;. Now consider an arbitrary but fixed k € N, then if m,n > N

k o

Dolai —af P <Y e —af? = 2™ -2ty < € (1)

j=1 j=1

Hence for n — oo and n > M Z\x;”—xj|2<62
k k k k

(Z lz;]?)/? < Z HY2z 4 Z H2 et (Z |z3"[), (Property of Euclidean norm)
; = = =

Then for k — oo, [|z]|l2 < € + |[z™|]2 hence x = (x;)jen € ¢* also, for k — oo and m > N,
™ = zl[3 = 3272, 2" — 24]* < € implying limy,col|z™ — 2|2 = 0. Therefore (2)30_; C 7,
is a convergent sequence that converges to x € £2. We conclude then that {? is a complete metric
space and an inner product space hence a Hilbert space.



A.1.5

Let X be an inner product space over K and (z,), (y,) be Cauchy sequences in X. Show: The
sequence ({X,,y,)) converges in K.

Proof: Since (x,), (yn) are Cauchy sequences over a metric space they are bounded, so there
exists M € K such that ||z,||,||yn|] < M for n € N. Since (z,), (yn) are Cauchy, there exists
N € N such that ||z, —2,|| < § and ||ym —yn|| < § for n > N. Then, using the Cauchy-Schwarz
inequality

(Zns Yn) — (Tms Ym)| = [(Tns Yn) — (Zms Yn) + (Tms Yn) — (T Ym)|
= [(Tn — Ty Yn) + (Tms Yn — Ym)|
< lzn = zmll - lynll + [[2m]| - 1y — yml|
< lzn = 2m||M + Ml[yn — yml|

<e+e
S4C—¢
2 2

So ((Zn,yn)) is a Cauchy sequence in K and therefore a convergent sequence in K.

A.1.6

Let X be an inner product space and x,y be points in X, a € K, and (z,,), (y») be sequences in
X and («,) a sequence in K.

Show: If z,, — z, y, — v and a, — « as n — 0o, then (W, 2y, yn) — (e, y) as n — oo.

Proof:

Let € > 0, then since (y,) converges, there is N € N such that ||y, —y|| < min{, W} for
n > N, notice that ||y,|| < ||y|| + € for n > N. Now, since (z,) converges, there is M € N with
M > N and ||z, — z|| < (e Consider the sequence (2, yn)
Tn — xayn> + <x7yn> - <(E,y>‘
Tp — T, Yn) + (T, Yy — Y)|

|<xn»yn> - <(E,y>‘ =

o~ o~ —

< xn—x,yn>|+\<x,yn—y>|

< Mwn = 2| lynll + 2] - [lyn — yll
<|lzn — [l - [ly + €l + [|2]] - [[yn — yl|
<§+§:eforn2M

S0 (@, Yn) — (x,y). Then since ay, = @, (WnTn, Yn) = @ {Tn, yn) = a(z,y) = {ax,y), as n — .

A.1.7

Let X be an inner product space, z € X and (z,) a sequence in X. Show: z, — = as n — oo if
and only if ||z,|| = ||z|| and (z,,z) = (z,x) as n — oco.

Proof:

(=) : Consider the sequence (z,) in X let x € X such that z,, — = then
0 < |llznll = llz[l| < [lzn — 2|| = 0 hence [|zn|| = [|z|| now let € > 0 with ||z, —z|| <
0 <[zn,z) = (z,2)[ = (20 — 2,2)] < [fen — alll|z]] < qgpllel] = e Hence (zn,2) — (, ).

(«<=) : Consider the sequence (x,) in X let z € X such that ||z,|| — ||z|| as n — oo and
(Tp, ) — (m,2), then ||z, — z||?> = (z, — 2,20 — ) = (Tp, Tp) — (Tn, ) — (T, 2,) + (2, 2) =
lznll? +112]1? = (@0, 2) — (2, 20) = |J2]* + ||2]]* — (2, 2) — (z,2) =0
Hence z,, — x as n — oo.



A.1.8

Let X be an inner produce space. Let y € X be fixed but arbitrary. Define f,g: X — C by

f(x): <$,y>, g(m):@,x), re X

Then f and g are Lipschitz continuous with Lipschitz constant ||y|].
Proof:
Let z,y,z € X,

d(f(2), f(2)) = [, 9) = (z9)| = [z = z,9)| < ||z = 2] - [[y]] = |lylld(z, 2)

d(g(x),9(2)) = [{y, x) = (v, 2)| = [{y, & = 2)[ <[yl - [l = 2[| = [ly[|d(z, 2)

Notice |[{z — z,9)|| < ||z — 2|| - ||y]| is true by the Cauchy-Schwarz inequality. Hence f,g are
Lipschitz continuous and ||y|| is an upper bound on the Lipschitz constant. Now, observe that this
upper bound is achieved: For y # 0,

d(f (), f0)  Ky,w) = O, [yl _ lyll?

T ) R T R I TR
d(g(y),900) _ 1{.y) — w0 _ Kyl _ lyll®> _ ™
40y,0) Il W~ 1ol

If y = 0 then d(y, 0) = d(0,0) = 0 = [ly|[ - 0 = [|y[|d((0), f(0)) = llyl|d(f(y), f(0))-
So the Lipschitz constant for f and g is ||y]/.

1 A.19

Let M be a complete linear subspace of the inner product space X.

Show: Each vector u € X has a unique representation u = v+w such that v € M and (w, z) =0
for all z € M.

Remark: The vector v € M is called the orthogonal projection of u on M and is also character-
ized as the unique vector in M such that d(u, M) = ||u — v|| which exists according to Proposition
A9

Hint: set w = u —v. Let z € M. Observe that the function ¢(a) = ||w — az|?, a € K, has a
minimum at o = 0.

Proof: Let u € X. Since M is a linear subspace of X it is convex, so there is a unique
v € M such that d(u, M) = ||[u —v||. Set w = u —v and let z € M. Consider the function
#(a) = ||lw — az||?, o € K. Notice that ¢(a) = |[|[u — (v + az)||*> and that (v + az) € M so ¢(«) is
minimized when « = 0, since this is an extremum, ¢, (0) = 0. Consider « € K then,

¢(@) = [Jw — az|®
= (w— az,w — az)
= [[wl* — atw, z) — alz,w) + |af*||2]|?
= [[wl? +[a?||2]]* — a ((w, 2) + (z,w))
= ¢ala) = 2a|||2|* — ((w, 2) + (z,0))
= ¢o(0) = — ((w,2) + (z,w)) =0 = R((w,z)) =0

Similarly we have for a € R,

¢(ai) = ||w — azil|?
= (w — azi,w — azi)
= [Jwl* + ai(w, 2) — aifz, w) +|af?||2||
= [[w][ + la?||2|]* + ai ((w, 2) = (z,w))
= [[wl® + [a?[2]]* - 2a3((w, 2))
= da(@i) = 2]all[2]|* = 23((w, 2))
= ¢o(0i) = —2F((w,2)) =0 = S((w,2)) =0

Therefore we conclude that (w, z) = R((w, 2)) + iS((w, z)) = 0+ 0i = 0.



Uniqueness: Let v,z € M then consider v = v+w and v = x4y therefore (w, z) = 0 = (y, 2)
for all z € M then consider z # 0 then if (w, z) =0 = (y, z) hence (w,z) — (y,2) = (w —y,2) =0
therefore by Cauchy-Schwarz, (w —y,z) = |[w — y|[ - [|2[| = 0 so [w — y[ = 0 since z # 0 which
implies w = y. Thus v = x because u = v+w =x+y — v+ w = x + w since y = w.
So v —x =y — w. Notice that v —xz € M and (y — w,2) = 0 for all 2 € M. In particular
0=(y—w,v—2x)=(y—w,y —w). By the properties of the inner product, 0 =y —w =v — z.



	Blank Page



