
Student: Juyoung Choi

Other students: Ping-Han Huang

Course: STP 598 (Case Studies in 
Design & Analysis of Experiments)

Program: Statistics MS 

Instructor: Ming-Hung Kao

Date: Spring 2020



STP 598 Case Studies in Design and Analysis of Experiments Final Project 

Comparison of Definitive Screening Designs and 

Standard Screening Designs 

by 

Ping-Han Huang 

Juyoung Choi 



1 

Individual Effort Report 

In completing this project, we equally divided all the tasks of the presentation and the report. 

Each of us took half of the tasks and completed it based on our discussion in periodic meetings 

and email correspondence. Specifically, Juyoung Choi was in charge of composing the parts of 

introduction and theoretical background and writing the PowerPoint presentation; Ping-Han 

Huang was responsible for composing the parts of simulation and discussion/conclusion and 

writing the project report. By typing down our names below, we all agree that this is a fair 

teamwork and appreciate each other’s contribution. 

 

 

Ping-Han Huang, April 23, 2020              Juyoung Choi, April 23, 2020             

 

 

 

 

 

 

 



2 

Table of Contents 

1. Introduction  .............................................................................................................................  3 

2. Review of DSD Fundamentals  ...............................................................................................  3 

2.1  Structure  ................................................................................................................  3 

2.2  Algorithm  ...............................................................................................................  4 

2.3  Features  ..................................................................................................................  5 

3. Simulation  ................................................................................................................................  5 

3.1  Settings  ...................................................................................................................  5 

3.2  Criteria  ...................................................................................................................  6 

3.2.1  Power  .........................................................................................................  6 

3.2.2  Relative Prediction Variance  ..................................................................  6 

3.2.3  Relative D-Efficiency  ...............................................................................  6 

3.3  Results  ....................................................................................................................  6 

3.3.1  Main Effects Only  ....................................................................................  7 

3.3.2  Main Effects + Two-Way Interactions  ..................................................  8 

4. Discussion  .................................................................................................................................  9 

5. Conclusion  ..............................................................................................................................  10 

6. References  ..............................................................................................................................  11 



3 

1. Introduction 

Screening designs are a kind of experimental designs used to screen multiple factors and 

identify active effects in the early stage of an investigation. The most common standard 

screening designs are Plackett-Burman designs and Resolution III/IV fractional factorial designs. 

While they are widely adopted in a variety of fields, these designs sometimes contain some 

undesirable features. For example, Plackett-Burman and Resolution III fractional factorial 

designs may have issues of aliasing some main effects with two-way interactions. Resolution IV 

fractional factorial designs may confound two-way interactions with each other. Additionally, in 

most of the standard screening designs the maximum of factor levels allowed is two, which may 

cause problems in the case where multilevel factors are needed to better address the 

factor-response relationship in the experiments. 

In view of these limitations of standard screening designs, many researchers and 

investigators today adopt another kind of designs called Definitive Screening Designs (DSDs). 

DSDs are considered a more efficient way that not only avoids model ambiguity but also allow 

further analyses on nonlinear effects. In this study, we aim to structure a critical review of the 

fundamentals of DSDs, mainly focusing on how DSDs offer advantages over standard screening 

designs; and conduct a computer simulation to verify our findings from the review and further 

provide some insights on the application of DSDs. 

2. Review of DSD Fundamentals 

2.1  Structure 

Definitive Screening Designs (Jones and Nachtsheim, 2011) are a class of statistical 

experimental designs that can be used for both screening and optimization. DSDs are able to 

handle both of quantitative and categorical factors. In this study, we focus on the case with 

three-level continuous factors. To take a close look at the DSD structure, here we introduce a full 

quadratic model with m factors that is assumed to follow a linear combination of main effects, 

two-way interactions, and quadratic effects: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖,𝑗

𝑚

𝑗=1

+ ∑ ∑ 𝛽𝑗𝑘𝑥𝑖,𝑗𝑥𝑖,𝑘

𝑚

𝑘=𝑗+1

𝑚−1

𝑗=1

+ ∑ 𝛽𝑗𝑗𝑥𝑖,𝑗
2

𝑚

𝑗=1

+ 𝜀𝑖 

 𝑖 = 1, … , 2𝑚 + 1, 
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where 𝑦𝑖 is the response variable in the 𝑖𝑡ℎ run, 𝑥𝑖,𝑗 is the 𝑗𝑡ℎ factor in the same 𝑖𝑡ℎ run, 𝑚 

represents the number of factors, 𝛽0, … , 𝛽𝑚𝑚 are the model coefficients, and the 𝜀𝑖 is the 

random error following an iid 𝑁(0, 𝜎2). In a matrix form, we have 𝑦 = 𝑋𝛽 + 𝜀, where 𝑋 is a 

2m+1 by (m+2)(m+1)/2 model matrix. 

Given the model statement above, the 

general design structure for m factors follows 

the form in the table. For m factors, there are 

2m+1 runs based on m fold-over pairs and the 

overall center point. Each run has exactly one 

factor level at its center point and the others at 

extremes. The values of ± 1 entries in the 

odd-numbered runs are determined by an 

optimal design algorithm. The values of ∓1 

entries in the even-numbered runs are 

generated by the fold-over operation. 

Following up this structure, DSDs use the 

algorithm presented in the next section to 

perform screening. 

2.2  Algorithm 

The DSD algorithm consists of two parts, creating an initial design and optimizing the 

design. The specific steps in each part are as follows: 

(1) Creating an initial design 

- Assigning zeros to the underlying diagonal entries (as illustrated in the table above). 

- Assigning -1 or 1 randomly to the odd-numbered rows of the rest of entries. 

- Filling the even-numbered rows with the values in odd-numbered rows multiplied by -1. 

(2) Optimizing the design 

- In the nonzero entry of the first row, changing the value to 1 or -1 and the other value in 

the same fold-over pair to -1 or 1 respectively. 

- Computing the determinant of the information matrix and changing the values in the 

second nonzero entry if the determinant is not improved. 

- Repeating this process until no replacement occurs and then shuffling the rows of the 

design to make sure it is randomized. 

Design Structure for m Factors 



5 

2.3  Features 

DSDs have seven preferable features over standard screening designs: 

(1) The number of runs required is 2m+1, which is only a bit larger than twice of the number of 

factors. 

(2) Main effects are completely independent of two-way interactions. 

(3) Each two-way interaction is not completely confounded with the other two-way interactions, 

even though they may be correlated. 

(4) All quadratic effects are estimable for continuous factors. 

(5) Quadratic effects are orthogonal to main effects and not completely confounded with 

interaction effects. 

(6) With the number of factors ranging from 6 to 12, DSDs are able to estimate all possible full 

quadratic models involving three or fewer factors with high statistical efficiency. 

(7) The designs are able to detect nonlinearity and identify the responsible factors without 

confounding any terms up to second order. 

3. Simulation 

3.1  Settings 

After reviewing the fundamentals of DSDs in the previous section, now we are curious how 

exactly DSDs perform compared to standard screening designs. In this section we conduct a 

computer simulation using SAS JMP to compare the performance of one DSD and two 

Plackett-Burman designs. Specifically, we construct a 13-run DSD, a 12-run Plackett-Burman 

design (denoted as PB design 1), and a 12-run PB augmented with one center point (denoted as 

PB design 2) that aims to match the run size of the 13-run DSD, as illustrated in Figure 1 below. 

Figure 1 

Design Structure 

13-run DSD 12-run PB 12-run PB + 1 center point 
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3.2  Criteria 

In our design comparison, we apply three types of criteria to evaluate the relative 

performance among the DSD and Plackett-Burman designs. The followings give some brief 

introduction to each criterion. 

 3.2.1  Power. The power refers to the probability that a design will detect active effects 

when they truly exist. It is computed for the hypothesis test 𝐻0: 𝛽𝑖 = 0. Given n is the number of 

observations and p is the number of terms other than the intercept in the model, we first obtain 

the α-level critical value Fc by solving: 

𝛼 = 1 − 𝐹𝐷𝑖𝑠𝑡(𝐹𝑐, 1, 𝑛 − 𝑝 − 1). 

Then we calculate the power as: 

𝑝𝑜𝑤𝑒𝑟 = 1 − 𝐹𝐷𝑖𝑠𝑡(𝐹𝑐, 1, 𝑛 − 𝑝 − 1, 𝜆), 

where λ is the noncentrality parameter for a noncentral F distribution. 

 3.2.2  Relative Prediction Variance. The relative prediction variance in SAS JMP is 

computed as: 

𝜎𝑅
2 =

𝒙𝑖
′𝑣𝑎𝑟(𝒀̂)𝒙𝑖

𝜎2
=

𝒙𝑖
′𝑣𝑎𝑟(𝒙𝑖

′𝜷̂)𝒙𝑖

𝜎2
= 𝒙𝑖

′(𝑿′𝑿)−1𝒙𝑖, 

where 𝑿 is the model matrix, 𝜎2 is the error variance, 𝜷̂ is a vector of least squares estimates 

of the parameters, 𝒙𝑖
′ is the 𝑖𝑡ℎ row of 𝑿.  

3.2.3  Relative D-Efficiency. Given two designs 𝑑𝑖 (𝑖 = 1, 2) with corresponding model 

matrix 𝑿(𝑑𝑖), the relative D-efficiency is computed as: 

𝐷𝑒(𝑑1, 𝑑2) = (
|𝑿(𝑑1)′𝑿(𝑑1)|

|𝑿(𝑑2)′ 𝑿(𝑑2)|
)

1/𝑝

, 

where p is the number of terms in the model. 

3.3  Results 

Our simulation results are composed of two parts: in the first part, we look into the three 

designs consisting of main effects only and their powers, relative predicted variance, and relative 

D-efficiencies. In the second part, we add two-way interactions to the designs and then conduct 

comparative analyses based on the same criteria. 
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3.3.1  Main Effects Only. We use the Compare Designs platform in SAS JMP to compare 

the performance of the three designs consisting of main effects only. In Figure 2 below, the PB 

design 2 performs the best for having the highest powers in all terms, while the 13-run DSD 

performs the worst among all. In terms of the relative prediction variance (left side of Figure 3), 

the PB design 2 again performs the best for having the uniformly smallest relative prediction 

variance, whereas the PB design 1 performs slightly worse. Further looking into the relative 

D-efficiencies (right side of Figure 3), we observe that the PB design 1 has higher relative 

D-efficiency compared to the 13-run DSD. Moreover, its relative D-efficiency increases further 

when a center point is added to the PB design 1. 

Figure 2 

Power Analysis and Plot for Designs Consisting of Main Effects 

 

 

Figure 3 

Relative Prediction Variance and Relative D-Efficiency for Designs Consisting of Main Effects 
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3.3.2  Main Effects + Two-Way Interactions. In this case, we add two-way interactions 

into the designs. Notice here we only include the two-way interactions that involve the first three 

factors, since the last three factors are confounding with other interaction terms and greatly 

reduce the power of the designs. In Figure 4 below, the 13-run DSD has the highest power in all 

factors especially in factors X4, X5, X6 and the two-way interaction terms. Additionally, the 

13-run DSD has the uniformly smallest relative prediction variance among the three designs (left 

side of Figure 5). Nevertheless, the relative D-efficiency of the 13-run DSD is still the lowest 

compared to the other two PB designs (right side of Figure 5). 

Figure 4 

Power Analysis and Plot for Designs with Interactions 

 

 

Figure 5 

Relative Prediction Variance and Relative D-Efficiency for Designs with Interactions 
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4. Discussion 

There are two major findings in our simulation study. In the first part of our simulation, the 

13-run DSD performs the worst in terms of power, relative prediction variance, and relative 

D-efficiency compared to the two Plackett-Burman designs. One possible reason why the 

relative prediction variance of the 13-run DSD is uniformly higher than of the other two designs 

is the different values of the diagonal elements of 𝑿′𝑿 each design holds. The relative 

prediction variance 𝜎𝑅
2 = 𝒙𝑖

′(𝑿′𝑿)−1𝒙𝑖 (Section 3.2.2 on p.5) is inversely proportional to 𝑿′𝑿. 

In our simulation, the value of the diagonal elements for the PB design 1 is 12, for the PB design 

2 is 13−1=12, and for the DSD is 13−3=10. Therefore, the relative prediction variance of the 

13-run DSD is the highest among the three designs. 

 In the second part of our simulation, the 13-run DSD performs better than the two 

Plackett-Burman designs in terms of power and relative prediction variance. Yet the relative 

D-efficiency given by the DSD is still the lowest. We are curious about the reasoning behind this 

result. First, we look into the color map (Figure 6 below). All of the main effects are orthogonal 

to the two-way interactions in the DSD, while some of the two-way interaction terms in the two 

Plackett-Burman designs are partially confounded with the main effects. We also observe that 

the correlations between the main effects and the two-way interaction terms in the two 

Plackett-Burman designs are not very strong. Thus, since our simulation designs here consist of 

less complicated aliasing structures and no quadratic terms, it is possible that the strengths of 

DSDs are not quite manifested in terms of the relative D-efficiency.  

Figure 6 

Color Map on Correlations 
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In further explaining this finding, Jones and Nachtsheim (2011) provide some insights from 

their study that gives similar results when comparing DSDs with standard orthogonal designs 

such as a Plackett-Burman design augmented with a center point. Their reasoning is that DSDs 

give up some efficiency for better estimation in which the main effect estimates are not biased by 

the two-way interaction terms. Unfortunately, our simulation structure may be too simple to 

clearly demonstrate this feature. 

5. Conclusion 

DSDs are a kind of novel three-level designs that requires a relatively small run size and 

avoids undesirable confounding of main effects and two-way interactions. They also allow the 

estimation of quadratic effects and the examination of factors that accounts for nonlinearity. 

Although in this study we focus on the comparisons between DSDs and Plackett-Burman designs 

with only main effects and two-way interaction terms, we observe that our 13-run DSD performs 

better and gives more satisfactory results when the model becomes more complicated with 

two-way interaction terms in the second part of the simulation. More advantageous features of 

DSDs may be found by constructing a more complex model including some quadratic effects. 

Future study can also be conducted on how DSDs handle categorical factors. As noted by 

Jones and Nachtsheim (2013), the original DSDs have some constraint that all factors must be 

quantitative. Subsequently, the DSD-augment method and the ORTH-augment method are 

developed for DSDs to process two-level categorical factors. Nonetheless, some tradeoffs exist 

in the aliasing of main effects and two-way interactions when applying these two methods. 

Advanced research may be carried out to dig into these two methods and shed some light on the 

possible solutions to the confounding problem. 
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