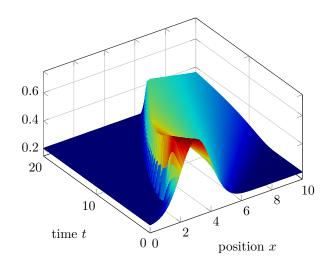
Syllabus: APM 576 - Theory of PDE

Fall 2019



- Instructor: Sebastien Motsch (email: smotsch@asu.edu)
- Class: M,W 12:15-1:30
- Office hours: M,W 2:00-3:00pm (WXLA 836)

Textbook: L. Evans, "Partial Differential Equations" (2nd edition)

Secondary book: H. Brézis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations"

Course Description

This course introduces rigorous methods to study partial differential equations such as existence theory and global behavior of solutions. The goal is to understand *intuitively* PDEs and then to learn analytic tools to *prove* results. This class is intended to focus mainly on **linear PDEs** (e.g. elliptic, parabolic equations) but if time allowed some techniques used for non-linear PDE will be introduced (e.g. fixed-point methods).

Although, there will be no numerical studies of PDEs in this class, numerical solutions will be often used to visualize the behavior of solutions. See for instance: http://seb-motsch.com/geek/pde_solver_flex.html

The course will be divided into four parts:

- **a)** Review (*chap. 2.1-2.3*): we will review some examples of PDEs with explicit solutions and study *formally* their behaviors.
- **b)** Functional analysis (*chap. 5.2-5.7*): from L^p to Sobolev spaces H^1 (where do solutions of PDEs live?), approximation by smooth functions, compactness, Sobolev inequality...
- c) Elliptic PDEs (chap. 6): solving boundary value problem (i.e. $\Delta u = f$).
- **d)** Evolution equations (chap. 7): solving hyperbolic/parabolic PDEs: $\partial_t u + c \cdot \nabla_x u = \Delta_x u$.
- If time allows, a short introduction to techniques used for non-linear PDE will be presented.

Grading

Biweekly homework (5 homework in total) and a project or presentation.